The effect of data standardization in cluster analysis

dc.contributor.authorNOGUEIRA, A.L.pt_BR
dc.contributor.authorMUNITA, C.S.pt_BR
dc.coverageNacionalpt_BR
dc.date.accessioned2021-08-02T18:22:57Z
dc.date.available2021-08-02T18:22:57Z
dc.date.issued2021pt_BR
dc.description.abstractThe application of multivariate techniques to experimental results requires a responsibility on behalf of the researcher to understand, evaluate and interpret their results, especially the ones that are more complex. The objective of this article is to evaluate the impact of three standardization techniques on the formation of clusters by means of the Kohonen neural network were studied. The standardization techniques studied were logarithm (log), generalized-log and improved minimum-maximum. The studies were performed using two different databases consisting of 298, named B1, and 146 samples, named B2. The B1 dataset is formed by samples that form two cluster very close. However, the B2 dataset form three diferent and separated cluster. The mass fractions of As, Ce, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Sc, Sm, Tb, Th, U, and Yb of each sample were determined by instrumental neutron activation analysis, INAA. Three validation indices : Jaccard, Fowlkes-Mallows and Rand were performed on the dataset. The results suggest that when the cluster are close, the improved minimum-maximum satandardization is better than the logarithm and generalized-log. However, when the cluster are separated, the logarithm and generalized-log are better than the improved minimum-maximum technique.pt_BR
dc.format.extent1-15pt_BR
dc.identifier.citationNOGUEIRA, A.L.; MUNITA, C.S. The effect of data standardization in cluster analysis. <b>Brazilian Journal of Radiation Sciences</b>, v. 9, n. 1A, p. 1-15, 2021. DOI: <a href="https://dx.doi.org/10.15392/bjrs.v9i1A.1324">10.15392/bjrs.v9i1A.1324</a>. Disponível em: http://repositorio.ipen.br/handle/123456789/32092.
dc.identifier.doi10.15392/bjrs.v9i1A.1324pt_BR
dc.identifier.fasciculo1Apt_BR
dc.identifier.issn2319-0612pt_BR
dc.identifier.orcid0000-0003-0546-1044pt_BR
dc.identifier.percentilfiSem Percentilpt_BR
dc.identifier.urihttp://repositorio.ipen.br/handle/123456789/32092
dc.identifier.vol9pt_BR
dc.relation.ispartofBrazilian Journal of Radiation Sciencespt_BR
dc.rightsopenAccesspt_BR
dc.sourceMeeting on Nuclear Applications (ENAN), 14th, October 21-25, 2019, Santos, SPpt_BR
dc.subjectalgorithms
dc.subjectcluster analysis
dc.subjectcomputer codes
dc.subjectdatasets
dc.subjectneural networks
dc.subjectneutron activation analysis
dc.subjectstandardization
dc.subjectstatistical models
dc.titleThe effect of data standardization in cluster analysispt_BR
dc.typeArtigo de periódicopt_BR
dspace.entity.typePublication
ipen.autorCASIMIRO JAYME ALFREDO SEPULVEDA MUNITA
ipen.autorANDRE LUIZ NOGUEIRA
ipen.codigoautor1325
ipen.codigoautor14760
ipen.contributor.ipenauthorCASIMIRO JAYME ALFREDO SEPULVEDA MUNITA
ipen.contributor.ipenauthorANDRE LUIZ NOGUEIRA
ipen.date.recebimento21-08
ipen.identifier.fiSem F.I.pt_BR
ipen.identifier.ipendoc27863pt_BR
ipen.type.genreArtigo
relation.isAuthorOfPublication9f2b42a5-30f7-4805-96a1-1cde2b1a405b
relation.isAuthorOfPublication83449424-ae5d-459e-9a14-f8253e5ed654
relation.isAuthorOfPublication.latestForDiscovery83449424-ae5d-459e-9a14-f8253e5ed654
sigepi.autor.atividadeMUNITA, C.S.:1325:320:Npt_BR
sigepi.autor.atividadeNOGUEIRA, A.L.:14760:320:Spt_BR

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
27863.pdf
Tamanho:
893.86 KB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções