Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization

Carregando...
Imagem de Miniatura

Data

Data de publicação

Orientador

Título da Revista

ISSN da Revista

Título do Volume

É parte de

É parte de

É parte de

Brazilian Journal of Radiation Sciences
Exportar
Mendeley

Projetos de Pesquisa

Unidades Organizacionais

Fascículo

Resumo
Neural networks, particularly deep neural networks, are used nowadays with great success in several tasks, such as image classification, image segmentation, translation, text to speech, speech to text, achieving super-human performance. In this study, the capabilities of deep learning are explored on a new field: gamma-spectroscopy analysis, comparing the classification performance of different deep neural network architectures. The following architectures where tested: VGG-16, VGG-19, Xception, ResNet, InceptionV3, and MobileNet, which are available through the Keras Deep Learning framework to identify several different radionuclides (Am-241, Ba133, Cd-109, Co-60, Cs-137, Eu-152, Mn-54, Na-24, and Pb-210). Using an HPGe detector to acquire several gamma spectra from different sealed sources to create a dataset used for the training and validation of the neural network's comparison. This study demonstrates the strengths and weaknesses of applying deep learning on gamma-spectroscopy analysis for nuclear waste characterization.

Como referenciar
OTERO, A.G.L.; POTIENS JUNIOR, A.J.; MARUMO, J.T. Comparing deep learning architectures on gamma-spectroscopy analysis for nuclear waste characterization. Brazilian Journal of Radiation Sciences, v. 9, n. 1A, p. 1-8, 2021. DOI: 10.15392/bjrs.v9i1A.1257. Disponível em: http://repositorio.ipen.br/handle/123456789/32082. Acesso em: 30 Dec 2025.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.

Agência de fomento

Coleções