Convolutional neural network-based pattern recognition in natural circulation instability images

dc.contributor.authorSCHOTT, SANDRO M.C.
dc.contributor.authorSILVA, MARCONES C.B. da
dc.contributor.authorANDRADE, DELVONEI A. de
dc.contributor.authorMESQUITA, ROBERTO N. de
dc.coverageInternacional
dc.date.accessioned2024-06-12T19:27:31Z
dc.date.available2024-06-12T19:27:31Z
dc.date.issued2024
dc.description.abstractHeat removal systems employing natural circulation are key in new nuclear power plant designs for mitigating accidents. This study applies Convolutional Neural Networks (CNNs) to classify 'chugging' instability phases, analyzing 1152 two-phase flow images from a Natural Circulation Circuit. Three CNN models, including one incorporating transfer learning from the ImageNet database, were trained via five-fold cross-validation to fine-tune hyperparameters. This involved comparing models with and without transfer learning against a baseline linear model. A model using a pre-trained Resnet50 with transfer learning accurately classified all 230 samples, outperforming the baseline linear model with an F1-Score of 0.859. The results endorse the use of CNNs with transfer learning for thermohydraulic image analysis in identifying natural circulation instability stages.
dc.description.sponsorshipComissão Nacional de Energia Nuclear (CNEN)
dc.description.sponsorshipIDCNEN: 01342.003313/2022-25
dc.format.extent267-288
dc.identifier.citationSCHOTT, SANDRO M.C.; SILVA, MARCONES C.B. da; ANDRADE, DELVONEI A. de; MESQUITA, ROBERTO N. de. Convolutional neural network-based pattern recognition in natural circulation instability images. <b>Concilium</b>, v. 24, n. 4, p. 267-288, 2024. DOI: <a href="https://dx.doi.org/10.53660/CLM-2919-24D10">10.53660/CLM-2919-24D10</a>. Disponível em: https://repositorio.ipen.br/handle/123456789/48081.
dc.identifier.doi10.53660/CLM-2919-24D10
dc.identifier.fasciculo4
dc.identifier.issn0010-5236
dc.identifier.orcidhttps://orcid.org/0000-0002-6689-3011
dc.identifier.orcidhttps://orcid.org/0000-0002-5355-0925
dc.identifier.percentilfiSem Percentil
dc.identifier.percentilfiCiteScoreSem Percentil CiteScore
dc.identifier.urihttps://repositorio.ipen.br/handle/123456789/48081
dc.identifier.vol24
dc.relation.ispartofConcilium
dc.rightsopenAccess
dc.subjectneural networks
dc.subjecttwo-phase flow
dc.subjectpattern recognition
dc.subjectnatural convection
dc.subjectimages
dc.subjectdata base management
dc.titleConvolutional neural network-based pattern recognition in natural circulation instability images
dc.typeArtigo de periódico
dspace.entity.typePublication
ipen.autorSANDRO MINARRINE COTRIM SCHOTT
ipen.autorDELVONEI ALVES DE ANDRADE
ipen.autorROBERTO NAVARRO DE MESQUITA
ipen.codigoautor14844
ipen.codigoautor1258
ipen.codigoautor1375
ipen.contributor.ipenauthorSANDRO MINARRINE COTRIM SCHOTT
ipen.contributor.ipenauthorDELVONEI ALVES DE ANDRADE
ipen.contributor.ipenauthorROBERTO NAVARRO DE MESQUITA
ipen.identifier.fiSem F.I.
ipen.identifier.fiCiteScoreSem CiteScore
ipen.identifier.ipendoc30397
ipen.type.genreArtigo
relation.isAuthorOfPublication8128fe5a-fcac-4766-89f1-5b08aace5173
relation.isAuthorOfPublication0eeb4436-68e5-4573-a603-35f5fc912178
relation.isAuthorOfPublication1975aa9b-be26-4f48-8196-96eeb4c2c0c3
relation.isAuthorOfPublication.latestForDiscovery8128fe5a-fcac-4766-89f1-5b08aace5173
sigepi.autor.atividadeSANDRO MINARRINE COTRIM SCHOTT:14844:420:S
sigepi.autor.atividadeDELVONEI ALVES DE ANDRADE:1258:420:N
sigepi.autor.atividadeROBERTO NAVARRO DE MESQUITA:1375:420:N

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
30397.pdf
Tamanho:
692.6 KB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções