Aplicação de redes neurais profundas na caracterização de rejeitos radioativos

Carregando...
Imagem de Miniatura

Data

Data de publicação

Orientador

Julio Takehiro Marumo

Título da Revista

ISSN da Revista

Título do Volume

É parte de

É parte de

É parte de

Exportar
Mendeley

Projetos de Pesquisa

Unidades Organizacionais

Fascículo

Resumo
O desenvolvimento da tecnologia nuclear deve permitir a gestão segura dos rejeitos radioativos, provenientes das várias etapas do ciclo do combustível nuclear, da produção de radiofármacos e das aplicações de radioisótopos na medicina, indústria e centros de pesquisa. A caracterização destes rejeitos é uma tarefa complexa, devido à grande variedade de aplicações, materiais e composição. Neste trabalho foi desenvolvida uma metodologia de caracterização final de rejeitos radioativos utilizando redes neurais profundas. O método de Monte Carlo foi empregado para realizar a simulação de espectros gama, considerando o cenário de um tambor de rejeitos de 200 litros contendo até dez diferentes radionuclídeos: Am-241, Ba-133, Cd-109, Co-57, Co-60, Cs-137, Eu-152, Mn-54, Na-22, Pb-210. Os dados provenientes das simulações foram utilizados para treinar e avaliar o desempenho de diferentes arquiteturas de redes neurais profundas. A arquitetura selecionada foi VGG-19 a qual, após adaptações, apresentou o melhor desempenho na tarefa de classificação, sendo capaz de identificar quais radionuclídeos e qual a intensidade de cada radionuclídeos que compõe o espectro de radiação gama, emitido por um tambor de rejeito. Os resultados obtidos mostram que a metodologia desenvolvida pode atuar como uma importante ferramenta no processo de caracterização de rejeitos radioativos, realizada rotineiramente pelo Serviço de Gerência de Rejeitos Radioativos do IPEN, permitindo a diminuição à exposição ocupacional as radiações ionizantes.

Como referenciar
OTERO, ANDRE G.L. Aplicação de redes neurais profundas na caracterização de rejeitos radioativos. Orientador: Julio Takehiro Marumo. 2022. 100 f. Dissertação (Mestrado em Tecnologia Nuclear) - Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP, São Paulo. DOI: 10.11606/D.85.2022.tde-07112022-153207. Disponível em: http://repositorio.ipen.br/handle/123456789/33602. Acesso em: 30 Dec 2025.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.

Agência de fomento

Coleções