LUCIANA VANNI GATTI
Resumo
Researcher at the National Institute for Space Research / Science Center of the Earth System and professor of graduate of Nuclear Technology Course IPEN / University of São Paulo. Scholarship CNPq level 1D. Coordinates the Greenhouse Gas Laboratory (LaGEE), part of LaPBio / CCST / INPE. Operates since 2003 mainly on research in the area of Climate Change, focused on understanding the role of Amazonia in the greenhouse gases Balances and the effect of climate variables in these statements. Operates in the areas of chemistry of the atmosphere, with an emphasis on trace Gas Analysis and Environmental Chemistry, acting on the following topics: greenhouse gases, atmospheric interactions, trace gases, volatile organic compounds. Graduated in Chemistry in FFCLRP- Ribeirão Preto, University of São Paulo (1987), Master in Chemistry Analytics from the University of São Paulo - São Carlos IQF (1991) and PhD in Science - UFSCar - Department of Chemistry (1997). Specialist in high precision greenhouse gases measurements and studies on regional scale using small aircraft measures. Coordinates international cooperation projects in partnership primarily with NOAA, University of Colorado, University of Leeds, Leicester, Wageningen, Edinburgh, among others. (Text obtained from the Currículo Lattes on November 12th 2021)
Pesquisador titular do Instituto Nacional de Pesquisas Espaciais/ Centro de Ciências do Sistema Terrestre e professor de pós-graduação do curso em Ciencia do Sistema terrestre do INPE e Tecnologia Nuclear do IPEN / USP. Bolsista CNPq nivel 1D. Coordena o Laboratório de Gases de Efeito Estufa (LaGEE), parte integrante do CCST/INPE. Membro do IG3IS - Implementing an Integrated, Global. Greenhouse Gas Information System. Atua desde 2003 principalmente em pesquisas na area de Mudanças Climáticas, focadas no entendimento do papel da Amazonia na emissão/absorção de Gases de Efeito Estufa e o efeito das variáveis climáticas nestes balanços. Atua nas áreas de Geociencias, Química da atmosfera, com ênfase em Análise de Gases Traços e Química Ambiental, atuando principalmente nos seguintes temas: gases de efeito estufa, interações atmosfericas, gases traços, compostos organicos volateis. Possui graduação em Química na FFCLRP- Ribeirão Preto pela Universidade de São Paulo (1987), Mestrado em Quimica Analítica pela Universidade de São Paulo - IQF São Carlos (1991) e doutorado em Ciencia - UFSCar - Departamento de Química (1997). Especialista em medidas de alta precisão de Gases de Efeito Estufa e estudos em escala Regional utilizando aviões de pequeno porte. Coordena projetos de cooperação internacional em parceria principalmente com NOAA, Universidade do Colorado, Universidade de Leeds, Leicester, Wageningen, Edimburgo, entre outras. (Texto extraído do Currículo Lattes em 12 nov. 2021)
Projetos de Pesquisa
Unidades Organizacionais
Cargo
Resultados de Busca
Resumo IPEN-doc 30051 Direct measurements can help to understand the changes in ecosystems2023 - GATTI, LUCIANA; CUNHA, CAMILLA; MARANI, LUCIANO; CASSOL, HENRIQUE; MESSIAS, CASSIANO; ARAI, EGIDIO; SOLER, LUCIANA; ALMEIDA, CLAUDIO; SETZER, ALBERTO; DOMINGUES, LUCAS; DENNING, SCOTT; MILLER, JOHN; GLOOR, MANUEL; CORREIA, CAIO; CRISPIM, STEPHANE; CORREA, SERGIO; NEVES, RAIANE; SILVA, FRANCINE; MACHADO, GUILHERMEThe Amazon is the largest rainforest on the planet and was an important carbon sink. The carbon sink is declining, mainly due to an increase in tree mortality as a result of deforestation, degradation, and local, regional and global climate change. In addition, deforestation and forest degradation reduce the ability of the Amazon rainforest to act as a carbon sink. CO2 Vertical Profiles (VP) were performed from 2010 to 2021 (805), using small aircraft at 4 locations: SAN (2.86° S 54.95° W), ALF (8.80° S 56.75° W), RBA (9.38° S 67.62° W) and from 2010 to 2012 on TAB (5.96° S 70.06° W) and since 2013 at TEF (3.39° S 65.55° W). The question if Amazonia is a carbon source or sink is an important role in the global carbon budget. Amazonia vertical profile annual mean derived from CO2 annual mean vertical profiles (VP subtracted from the background concentration: ΔVP) from the 4 studied sites can help to clarify this important question. The sampling frequency was approximately 2 times per month in each location, from 4.4 km height (a.s.l.) until near surface 300 m (a.s.l.), and usually carried out between 12:00 and 13:00 local time. The CO2 samples were analyzed at INPE's LaGEE (Greenhouse Gas Laboratory), in São Jose dos Campos. This result is a direct indication of the regional source in the global carbon budget, indeed there are well-known discrepancies from many studies using different methodologies (bottom-up, top-down techniques, and a wide variety of global, regional, and inversion models). In this study, we will present Carbon flux from the time series for the 4 sites and Amazon Carbon balance using the column budget technique, and analyze the correlations with various parameters related to climate, vegetation, deforestation, and biomass burning.Artigo IPEN-doc 29913 Increased Amazon carbon emissions mainly from decline in law enforcement2023 - GATTI, LUCIANA V.; CUNHA, CAMILLA L.; MARANI, LUCIANO; CASSOL, HENRIQUE L.G.; MESSIAS, CASSIANO G.; ARAI, EGIDIO; DENNING, SCOTT A.; SOLER, LUCIANA S.; ALMEIDA, CLAUDIO; SETZER, ALBERTO; DOMINGUES, LUCAS G.; BASSO, LUANA S.; MILLER, JOHN B.; GLOOR, MANUEL; CORREIA, CAIO S.C.; TEJADA, GRACIELA; NEVES, RAIANE A.L.; RAJÃO, RAONI; NUNES, FELIPE; S.FILHO, BRITALDO S.; SCHMITT, JAIR; NOBRE, CARLOS; CORRÊA, SERGIO M.; SANCHES, ALBER H.; ARAGÃO, LUIZ E.O.C.; ANDERSON, LIANA; VON RANDOW, CELSO; CRISPIM, STEPHANE P.; SILVA, FRANCINE M.; MACHADO, GUILHERME B.M.The Amazon forest carbon sink is declining, mainly as a result of land-use and climate change1–4. Here we investigate how changes in law enforcement of environmental protection policies may have affected the Amazonian carbon balance between 2010 and 2018 compared with 2019 and 2020, based on atmospheric CO2 vertical profiles5,6, deforestation7 and fire data8, as well as infraction notices related to illegal deforestation9. We estimate that Amazonia carbon emissions increased from a mean of 0.24 ± 0.08 PgC year−1 in 2010–2018 to 0.44 ± 0.10 PgC year−1 in 2019 and 0.52 ± 0.10 PgC year−1 in 2020 (± uncertainty). The observed increases in deforestation were 82% and 77% (94% accuracy) and burned area were 14% and 42% in 2019 and 2020 compared with the 2010–2018 mean, respectively. We find that the numbers of notifications of infractions against flora decreased by 30% and 54% and fines paid by 74% and 89% in 2019 and 2020, respectively. Carbon losses during 2019–2020 were comparable with those of the record warm El Niño (2015–2016) without an extreme drought event. Statistical tests show that the observed differences between the 2010– 2018 mean and 2019–2020 are unlikely to have arisen by chance. The changes in the carbon budget of Amazonia during 2019–2020 were mainly because of western Amazonia becoming a carbon source. Our results indicate that a decline in law enforcement led to increases in deforestation, biomass burning and forest degradation, which increased carbon emissions and enhanced drying and warming of the Amazon forests.Artigo IPEN-doc 29868 CO2 emissions in the Amazon2023 - TEJADA, GRACIELA; GATTI, LUCIANA V.; BASSO, LUANA S.; CASSOL, HENRIQUE L.G.; SILVA-JUNIOR, CELSO H.L.; MATAVELI, GUILHERME; MARANI, LUCIANO; ARAI, EGIDIO; GLOOR, MANUEL; MILLER, JHON B.; CUNHA, CAMILA L.; DOMINGUES, LUCAS G.; IPIA, ALBER; CORREIA, CAIO S.C.; CRISPIM, STEPHANE P.; NEVES, RAIANE A.L.; RANDOW, CELSO V.Amazon forests are the largest forests in the tropics and play a fundamental role for regional and global ecosystem service provision. However, they are under threat primarily from deforestation. Amazonia's carbon balance trend reflects the condition of its forests. There are different approaches to estimate large-scale carbon balances, including top-down (e.g., CO2 atmospheric measurements combined with atmospheric transport information) and bottom-up (e.g., land use and cover change (LUCC) data based on remote sensing methods). It is important to understand their similarities and differences. Here we provide bottom-up LUCC estimates and determine to what extent they are consistent with recent top-down flux estimates during 2010 to 2018 for the Brazilian Amazon. We combine LUCC datasets resulting in annual LUCC maps from 2010 to 2018 with emissions and removals for each LUCC, and compare the resulting CO2 estimates with top-down estimates based on atmospheric measurements. We take into account forest carbon stock maps for estimating loss processes, and carbon uptake of regenerating and mature forests. In the bottom-up approach total CO2 emissions (2010 to 2018), deforestation and degradation are the largest contributing processes accounting for 58% (4.3 PgCO2) and 37% (2.7 PgCO2) respectively. Looking at the total carbon uptake, primary forests play a dominant role accounting for 79% (−5.9 PgCO2) and secondary forest growth for 17% (−1.2 PgCO2). Overall, according to our bottom-up estimates the Brazilian Amazon is a carbon sink until 2014 and a source from 2015 to 2018. In contrast according to the top-down approach the Brazilian Amazon is a source during the entire period. Both approaches estimate largest emissions in 2016. During the period where flux signs are the same (2015–2018) top-down estimates are approximately 3 times larger in 2015–2016 than bottom-up estimates while in 2017–2018 there is closer agreement. There is some agreement between the approaches–notably that the Brazilian Amazon has been a source during 2015–2018 however there are also disagreements. Generally, emissions estimated by the bottom-up approach tend to be lower. Understanding the differences will help improve both approaches and our understanding of the Amazon carbon cycle under human pressure and climate change.Artigo IPEN-doc 29705 Moisture origins of the Amazon carbon source region2023 - STAAL, ARIE; KOREN, GERBRAND; TEJADA, GRACIELA; GATTI, LUCIANA V.The southeastern Amazon has recently been shown to be a net carbon source, which is partly caused by drying conditions. Drying depends on a number of factors, one of which is the land cover at the locations where the moisture has originated as evaporation. Here we assess for the first time the origins of the moisture that precipitates in the Amazon carbon source region, using output from a Lagrangian atmospheric moisture tracking model. We relate vegetation productivity in the Amazon carbon source region to precipitation patterns and derive land-cover data at the moisture origins of these areas, allowing us to estimate how the carbon cycle and hydrological cycle are linked in this critical part of the Amazon. We find that, annually, 13% of the precipitation in the Amazon carbon source region has evaporated from that same area, which is half of its land-derived moisture. We further find a moisture-recycling-mediated increase in gross primary productivity of roughly 41 Mg carbon km−2 yr−1 within the Amazon carbon source region if it is fully forested compared to any other land cover. Our results indicate that the parts of the Amazon forest that are already a net carbon source, still help sustain their own biomass production. Although the most degraded parts of the Amazon depend mostly on oceanic input of moisture, further degradation of this region would amplify carbon losses to the atmosphere.Artigo IPEN-doc 29494 Sixteen years of MOPITT satellite data strongly constrain Amazon CO fire emissions2022 - NAUS, STIJN; DOMINGUES, LUCAS G.; KROL, MAARTEN; LUIJKX, INGRID T.; GATTI, LUCIANA V.; MILLER, JOHN B.; GLOOR, EMANUEL; BASU, SOURISH; CORREIA, CAIO; KOREN, GERBRAND; WORDEN, HELEN M.; FLEMMING, JOHANNES; PETRON, GABRIELLE; PETERS, WOUTERDespite the consensus on the overall downward trend in Amazon forest loss in the previous decade, estimates of yearly carbon emissions from deforestation still vary widely. Estimated carbon emissions are currently often based on data from local logging activity reports, changes in remotely sensed biomass, and remote detection of fire hotspots and burned area. Here, we use 16 years of satellite-derived carbon monoxide (CO) columns to constrain fire CO emissions from the Amazon Basin between 2003 and 2018. Through data assimilation, we produce 3 d average maps of fire CO emissions over the Amazon, which we verified to be consistent with a long-term monitoring programme of aircraft CO profiles over five sites in the Amazon. Our new product independently confirms a long-term decrease of 54% in deforestation-related CO emissions over the study period. Interannual variability is large, with known anomalously dry years showing a more than 4-fold increase in basin-wide fire emissions relative to wet years. At the level of individual Brazilian states, we find that both soil moisture anomalies and human ignitions determine fire activity, suggesting that future carbon release from fires depends on drought intensity as much as on continued forest protection. Our study shows that the atmospheric composition perspective on deforestation is a valuable additional monitoring instrument that complements existing bottom-up and remote sensing methods for land-use change. Extension of such a perspective to an operational framework is timely considering the observed increased fire intensity in the Amazon Basin between 2019 and 2021.Resumo IPEN-doc 28908 Regional variability in Amazon methane emissions based on lower-troposphere observations2022 - BASSO, LUANA; GATTI, LUCIANA; MARANI, LUCIANO; MILLER, JOHN; GLOOR, MANUEL; MELACK, JOHN; CASSOL, HENRIQUE; TEJADA, GRACIELA; DOMINGUES, LUCAS; ARAI, EGIDIO; SANCHEZ, ALBER; CORREA, SERGIO; ANDERSON, LIANA; ARAGAO, LUIZ; CORREIA, CAIO; CRISPIM, STEPHANIE; NEVES, RAIANEAfter a period where atmospheric methane (CH4) levels were nearly steady, its levels have been rapidly raising since 2007, but the main reasons remains uncertain. Increases in wetlands emissions could be one possible reason, mainly at tropical regions like Amazonia, which host some of the largest wetlands/seasonally flooded areas on the globe. Based on 590 lower troposphere vertical profiles of CH4 and carbon monoxide (CO) observations over four sites at Amazon (at the northeast, southeast, northwest-central and southwest-central regions) we estimated that Amazon region contributes with 8% of global CH4 emissions, and wetlands are the mainly CH4 source to the atmosphere (Basso et al., 2021). Vertical profiles are sampled using light aircraft, high-precision greenhouse gas and CO analysis of flask air, fortnightly between 2010 and 2018. We observed an unexpected east-west gradient in CH4 emissions, with higher emissions in northeast Amazon region. The higher emissions are mainly from wetlands and are not explained by biomass burning and anthropogenic emissions (like enteric fermentation), but its causes remains unclear. In the other three sites located further downwind along the main air-stream the CH4 emissions represents approximately 24-36% of what is observed in the northeast region. Our wetlands emission estimates of each region were compared to analogous fluxes from the WetCharts wetland model ensemble (Bloom et al., 2017). The estimates were similar except for the northeast region, where WetCharts does show substantial emissions, but still just 40% of our estimates based on the lower troposphere observations (Basso et al., 2021).Resumo IPEN-doc 28907 Forest biomass2022 - TEJADA, GRACIELA; GATTI, LUCIANA V.; BASSO, LUANA S.; MATAVELI, GUILHERME A.V.; CASSOL, HENRIQUE L.G.; VON RANDOW, CELSOTropical forest plays a fundamental role in the ecosystem services maintenance. Amazon forests have been subject to intense land use and cover changes (LUCC), mainly in the Southeast portion. Like many tropical countries, more than 70% of Brazilian greenhouse gasses emissions come from LUCC. Under the framework of the CARBAM Project, atmospheric CO2 measurements in four sites of the Amazon, show that there is a reduction in the Amazon forest capacity to absorb C in the proximities of previous deforested and degraded forest areas, such as the well-known “Deforestation Arc” in the Southeast amazon. There are many LUCC databases now available that allow to assess the deforestation, degradation and second forest dynamics and contribute to a better understanding of the carbon dynamics of nine years of in situ atmospheric CO2 measurements. Nevertheless, in order to know how much CO2 is released to the atmosphere due to LUCC, it is necessary to quantify how much carbon is stored in the forest biomass and to assess the biomass variability along the different datasets. Here we compared the forest biomass quantity of three biomass maps: the fourth national communication of Brazil map (official), a global map (Baccini et al. 2012) and a regional map for the Brazilian Amazon (EBA project). We found significant differences for the Brazilian Amazon: between the official biomass map and the regional map 27%, between the global and regional map 25% and the smallest difference was between the official and the global map (3%). Even though the official and the regional maps were obtained using the same data inputs, the official map refers to a potential biomass for 2010 and the regional map reflects the real biomass in 2016, this could explain the difference. The official and global maps represent the potential biomass, and as we used the mean forest area, the biomass content is similar. When comparing these maps at a deforested pixel level the differences could be larger. The spatial and temporal scale of biomass maps make it hard to estimate the CO2 emissions of degradation and secondary forest loss and growth which are fundamental to understand the Amazon C balance under climate change and LUCC pressures.Artigo IPEN-doc 28503 Amazon methane budget derived from multi-year airborne observations highlights regional variations in emissions2021 - BASSO, LUANA S.; MARANI, LUCIANO; GATTI, LUCIANA V.; MILLER, JOHN B.; GLOOR, MANUEL; MELACK, JOHN; CASSOL, HENRIQUE L.G.; TEJADA, GRACIELA; DOMINGUES, LUCAS G.; ARAI, EGIDIO; SANCHEZ, ALBER H.; CORREA, SERGIO M.; ANDERSON, LIANA; ARAGAO, LUIZ E.O.C.; CORREIA, CAIO S.C.; CRISPIM, STEPHANE P.; NEVES, RAIANE A.L.Atmospheric methane concentrations were nearly constant between 1999 and 2006, but have been rising since by an average of ~8 ppb per year. Increases in wetland emissions, the largest natural global methane source, may be partly responsible for this rise. The scarcity of in situ atmospheric methane observations in tropical regions may be one source of large disparities between top-down and bottom-up estimates. Here we present 590 lower-troposphere vertical profiles of methane concentration from four sites across Amazonia between 2010 and 2018. We find that Amazonia emits 46.2 ± 10.3 Tg of methane per year (~8% of global emissions) with no temporal trend. Based on carbon monoxide, 17% of the sources are from biomass burning with the remainder (83%) attributable mainly to wetlands. Northwest-central Amazon emissions are nearly aseasonal, consistent with weak precipitation seasonality, while southern emissions are strongly seasonal linked to soil water seasonality. We also find a distinct east-west contrast with large fluxes in the northeast, the cause of which is currently unclear.Artigo IPEN-doc 27964 Amazonia as a carbon source linked to deforestation and climate change2021 - GATTI, LUCIANA V.; BASSO, LUANA S.; MILLER, JOHN B.; GLOOR, MANUEL; DOMINGUES, LUCAS G.; CASSOL, HENRIQUE L.G.; TEJADA, GRACIELA; ARAGAO, LUIZ E.O.C.; NOBRE, CARLOS; PETERS, WOUTER; MARANI, LUCIANO; ARAI, EGIDIO; SANCHES, ALBER H.; CORREA, SERGIO M.; ANDERSON, LIANA; VON RANDOW, CELSO; CORREIA, CAIO S.C.; CRISPIM, STEPHANE P.; NEVES, RAIANE A.L.Amazonia hosts the Earth’s largest tropical forests and has been shown to be an important carbon sink over recent decades. This carbon sink seems to be in decline, however, as a result of factors such as deforestation and climate change. Here we investigate Amazonia’s carbon budget and the main drivers responsible for its change into a carbon source. We performed 590 aircraft vertical profiling measurements of lower-tropospheric concentrations of carbon dioxide and carbon monoxide at four sites in Amazonia from 2010 to 2018. We find that total carbon emissions are greater in eastern Amazonia than in the western part, mostly as a result of spatial differences in carbon-monoxide-derived fire emissions. Southeastern Amazonia, in particular, acts as a net carbon source (total carbon flux minus fire emissions) to the atmosphere. Over the past 40 years, eastern Amazonia has been subjected to more deforestation, warming and moisture stress than the western part, especially during the dry season, with the southeast experiencing the strongest trends. We explore the effect of climate change and deforestation trends on carbon emissions at our study sites, and find that the intensification of the dry season and an increase in deforestation seem to promote ecosystem stress, increase in fire occurrence, and higher carbon emissions in the eastern Amazon. This is in line with recent studies that indicate an increase in tree mortality and a reduction in photosynthesis as a result of climatic changes across Amazonia.Resumo IPEN-doc 27961 Sensitivity of Amazon Carbon Balance to climate and human-driven changes in Amazon2019 - GATTI, LUCIANA V.; DOMINGUES, LUCAS G.; BASSO, LUANA S.; MILLER, JOHN B.; CASSOL, HENRIQUE L.G.; MARANI, LUCIANO; CORREIA, CAIO S. de C.; TEJADA, GRACIELA; ARAGAO, LUIZ E.O.C.; ANDERSON, LIANA O.; GLOOR, MANUEL; PETERS, WOUTER; VON RANDOW, CELSO; NEVES, RAIANE A.L.; IPIA, ALBER; CRISPIM, STEPHANE P.; ARAI, EGIDIOAmazon is the major tropical land region, with critical processes, such as the carbon cycle, not yet fully understood. Only very few long-term greenhouse gas measurements is available in the tropics. The Amazon accounts for 50% of Earth’s tropical rainforests hosting the largest carbon pool in vegetation and soils (~200 PgC). The net carbon exchange between tropical land and the atmosphere is critically important because the stability of carbon in forests and soils can be disrupted in short time-scales. The main processes releasing C to the atmosphere are deforestation, fires and changes in growing conditions due to increased temperatures and droughts. Such changes may thus cause feedbacks on global climate. In the last 40 years, Amazon mean temperature increased by 1.1ºC. The length of the dry season is also increasing. We observed a reduction of 50.5mm in the annual mean precipitation during this same 40 years period. Precipitation reduction occurred mainly in the dry season, exacerbating vegetation water stress with consequences for the carbon balance. To understand the consequences of climate and human-driven changes on the C budget of Amazonia, we put in place the first program with regional representativeness, from 2010 onwards, aiming to quantify greenhouse gases based on extensive collection of vertical profiles of CO2 and CO. Regular vertical profiles from the ground up to 4.5 km height were performed at four sites along the main air-stream over the Amazon. Here we will report what these new data tell us about the greenhouse gas balance and its controls during the 2010-2017. Along this period we performed 513 vertical profiles over four strategic regions that represent fluxes over the entire Amazon region. The observed variability of carbon fluxes during these 8 years is correlated with climate variability (Temperature, precipitation, GRACE) and human-driven changes (Biomass Burning). The correlations were performed inside each influenced area for each studied site. It was observed a persistent C source from the Amazon (natural plus anthropogenic sources) to the atmosphere. Amazon was a consistent source of 0.4 ± 0.2 PgC/year on average considering the Amazon area of 7.2 million km2. Fire emission is the main source of carbon to the atmosphere, which is not compensate by the C removal from old-growth Amazon forest.