NIKOLAS LYMBERIS SCURO
2 resultados
Resultados de Busca
Agora exibindo 1 - 2 de 2
Artigo IPEN-doc 27846 A simulation model for capacity planning of nuclear fuel plants for research reactors2021 - NEGRO, M.L.N.; DURAZZO, M.; MESQUITA, M.A.; SCURO, N.L.; CARVALHO, E.F.U.; ANDRADE, D.A.The demand for nuclear fuel for research reactors is increasing worldwide. However, some nuclear fuel factories have low production volumes. Literature regarding how to expand the capacity of those facilities in a safe and reliable way is scarce. Thus, the purpose of this work is to propose and validate a conceptual model for increasing the production capacity of such factories. The facilities addressed here are those that produce plate-type fuel elements loaded with LEU U3Si2-Al, which are typically used in nuclear research reactors. Data from a real nuclear fuel plant was collected and applied to the model, thus setting up a case study. Two different strategies, as well as several production scenarios, were conceived for the use of the model. Each scenario experiments with the different possibilities of enlarging capacity. Discrete events simulation was used in order to cover all production scenarios. The tests indicated significant increases in productive capacity, thus showing that the model fully achieved its proposed objective. One of the main conclusions to be highlighted is the model’s effectiveness, which was demonstrated by using the model in two different strategies and obtaining increases in capacity with both of them.Artigo IPEN-doc 26394 A CFD analysis of blockage length on a partially blocked fuel rod2019 - SCURO, N.L.; UMBEHAUN, P.E.; ANGELO, E.; ANGELO, G.; ANDRADE, D.A.After a loss of coolant accident (LOCA), fuel rods may balloon. The swelling can partially block the flow channel, affecting the coolability during reflood phase. In order to analyze the influence of blockage length, using a radial block-age of 90%, varying just the blockage length, many steady state numerical simulations has been done using Ansys-CFX code to verify thermal-hydraulic properties according to different forced cooled conditions. Temperature peaks are observed on cladding, followed by a temperature drop. A 5x5 fuel assembly, with 9 centered ballooned fuel rod, flow redistribution inside channels can also be captured, indicating an overheating zone. Therefore, this study conclude, for the same boundary conditions, the longer the blockage length originated after LOCA events, the higher are the clad temperatures, indicating the possibility of overheat during transient conditions on reflood.