LUCAS VERDI ANGELOCCI

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • Artigo IPEN-doc 28351
    New model for an epoxy-based brachytherapy source to be used in spinal cancer treatment
    2021 - SILVA, JOSE T.; SOUZA, CARLA D. de; ANGELOCCI, LUCAS V.; ROSERO, WILMMER A.A.; NOGUEIRA, BEATRIZ R.; CORREIA, RUANYTO W.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.
    The present work described the cold fabrication of a P-32 radioactive source to be used in CNS cancer using epoxy resin. The epoxy plaque fabricated with Teflon mold presented better agreement. MCNP simulation evaluated the radiation dose. Special attention was given to factors that can impact dose distribution. Average dose was 16.44 ± 2.89% cGy/s. Differences of less than 0.01 cm in thickness within the plaque lead to differences of up to 12% in the dose rate.
  • Artigo IPEN-doc 27771
    Monte Carlo simulation to assess free space and end-weld thickness variation effects on dose rate for a new Ir-192 brachytherapy source
    2021 - ANGELOCCI, LUCAS V.; SOUZA, CARLA D. de; PANTELIS, EVAGGELOS; NOGUEIRA, BEATRIZ R.; ZEITUNI, CARLOS A.; ROSTELATO, MARIA E.C.M.
    A new Iridium-192 seed for brachytherapy is under development. Specific dose rate contribution by two different factors were evaluated: the effect from movement of the core in the free space within the seed and the effect of the end-weld thickness variation. Both were investigated through use of the Monte Carlo radiation transport code MCNP6 and an in-house routine programmed with MATLAB. Differences greater than 15% compared to results from the nominal seed were found near the source, indicating a significant dose variation.
  • Artigo IPEN-doc 27362
    New core configuration for the fabrication of 125I radioactive sources for cancer treatment
    2020 - SOUZA, CARLA D. de; ZEITUNI, CARLOS A.; FEHER, ANSELMO; MOURA, JOÃO A.; COSTA, OSVALDO L. da; ANGELOCCI, LUCAS V.; ROSTELATO, MARIA E.C.M.
    In order to provide prostate brachytherapy treatment for more Brazilian men, IPEN is building a laboratory for the manufacture of radioactive sources. The new methodology for the production of iodine-125 seeds with yield 71.7% ± 5.3%. Points of importance were evaluated/discussed: photo-sensibility, reaction vial type, the substitution for iodine-131, pH, and solution volume. The surface was analyzed by FTIR and EDS. At the end, a Monte Carlo-MCNP6 simulation was performed to evaluate the TG-43 parameters.
  • Resumo IPEN-doc 26910
    Efficiancy of hydrogen peroxide for cleaning production areas and equipments in the Laboratory for Brachyterapy Sources Production
    2017 - BAPTISTA, T.; ROSTELATO, M.C.M.; ZEITUNI, C.; PERINI, E.A.; SOUZA, C.D. de; MARQUES, J. de O.; NOGUEIRA, B.R.; ANGELOCCI, L.V.
    Purpose: A great challenge in the brachytherapy sources production is to fulfill the Good Manufacturing Practices (GMPs) requirements, involving the process validation and of all supporting activities such as cleaning and sanitization. The increasingly strict requirements for quality assurance system, with several norms, normative resolutions and rules that must follow both medical products and radiochemical requirements, has led to a constant validation concerns. The main goal of GMP is to reduce inherent risks such as product contamination with microorganisms and cross-contamination. Methods: In the Laboratory for Brachytherapy Sources Production it was established a cleaning program for cleanrooms and hot cells using a hydrogen peroxide solution (6%). This work aims to assess the effectiveness of this cleaning agent in reducing and/or eliminating microbial load into the cleanrooms and equipments to acceptable levels in accordance with the current legislation. Results: The analysis was conducted using the results of the environmental monitoring program with settling contact plates in cleanrooms after the cleaning procedures. Furthermore, it was possible to evaluate the action of the sanitizing agent on the microbial population at the equipment and cleanrooms’ surfaces. It was also evaluated the best way to accomplish the cleaning program considering the dosimetry factor in each production process, hence the importance of radiological contamination. All the following environmental monitoring procedures presented satisfactory results, showing that the cleaning procedures was able to reduce and maintain the acceptable levels of viable and non-viable particles for the cleanroom classification (ISO 5 and ISO 7). The cleaning process with this sanitizer (hydrogen peroxide) can be performed quickly right before the production; allowing the production of brachytherapy sources without after use residues. Conclusion: This data will help the production of a clean and reliable product.