LUCAS VERDI ANGELOCCI

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 27901
    Anisotropy function of a new 192-Ir brachytherapy source
    2021 - ABREU, R.T.; ANGELOCCI, L.V.; NOGUEIRA, B.R.; SANTOS, H.N.; ZEITUNI, C.A.; ROSTELATO, M.E.C.M.
    Brachytherapy is a type of radiotherapy that uses radioactive sources (seeds, wires, among others) close to the tumor. Is important to provide a detailed description of seed dosimetry, so only the tumor will be irradiated avoiding unnecessary dose on adjacent organs and structures. To evaluate the dosimetric parameter of the anisotropy function for a new brachytherapy source, this work proposes the use of microcube TLD-100 dosimeters to find the dose rate using the AAPM Task Group 43 protocol (TG-43). The anisotropy function represents dose distribution around the source and has a major role for characterization of a new iridium source being implemented in Brazil. The value of D(r,θ) was measured using Solid Water phantoms, r value being the distance from the geometric center of the source to the position of the dosimeter on the phantom, and θ being the angle formed between the longitudinal axis of the source and the line connecting the geometric center to the TLD. Monte Carlo calculations were performed to evaluate the anisotropy function to validate the experimental measurements. For each distance value (r), an anisotropy function was plotted (1.0, 2.0, 3.0, 4.0, 5.0, and 10.0 cm). The results obtained with Monte Carlo calculations agreed ±2% with the experimental values for r greater than 3.0 cm, so these results show a good distribution of dose around the seed considering the high energy of 192-Ir (average of 380 KeV) and encapsulation thickness.
  • Artigo IPEN-doc 27887
    Dose-rate constant and air-kerma strength evaluation of a new 125I brachytherapy source using Monte-Carlo
    2021 - PRIMO, C.O.; ANGELOCCI, L.V.; KARAM JUNIOR, D.; ZEITUNI, C.A.; ROSTELATO, M.E.C.M.
    Brachytherapy is a modality of radiotherapy which treats tumors using ionizing radiation with sources located close to the tumor. The sources can be produced from several radionuclides in various formats, such as Iodine-125 seeds and Iridium-192 wires. In order to produce a new Iodine-125 seed in IPEN/CNEN and ensure its quality, it is essential to describe the seed dosimetry, so when applied in a treatment the lowest possible dose to neighboring healthy tissues can be reached. The report by the AAPM’s Task Group 43 U1 is a document that indicates the dosimetry procedures in brachytherapy based on physical and geometrical parameters. In this study, dose-rate constant and air-kerma strength parameters were simulated using the Monte Carlo radiation transport code MCNP4C. The air-kerma strength is obtained from an ideal modeled seed, since its actual value should be measured for seeds individually in a specialized lab with a Wide-Angle Free-Air Chamber (WAFAC). Dose-rate constant and air-kerma strength are parameters that depends on intrinsic characteristics of the source, i.e. geometry, radionuclide, encapsulation, and together they define the dose-rate to the reference point. Radial dose function describes the dose fall-off with distance from the source. This study presents the values found for these parameters with associated statistical uncertainty, and is part of a larger project that aims the full dosimetry of this new seed model, including experimental measures.