RAFAEL MORGADO BATISTA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 28882
    Phase transformation/stabilization and ionic conductivity in tantalum oxide coā€‘doped zirconiaā€‘scandia solid electrolyte
    2022 - SOUZA, J.P.; FUJIMOTO, T.G.; BATISTA, R.M.; STEIL, M.C.; MUCCILLO, R.; MUCCILLO, E.N.S.
    The influence of small amounts of tantalum oxide as co-dopant on phase transformation and stabilization, microstructure and ionic conductivity of zirconia-10 mol% scandia is reported in this work. Cylindrical pellets were prepared by solid state synthesis with sintering at 1500 Ā°C for 5 h. High relative density values (> 95%) were achieved. Reduction of the enthalpy for the cubic ā‡ŒĪ²-rhombohedral phase transformation was found for increasing amounts of the co-dopant. Full stabilization of the cubic structure at room temperature was obtained with only 0.45 mol% tantalum oxide addition. The ionic conductivity of sintered specimens was investigated as a function of the temperature and oxygen partial pressure by impedance spectroscopy. The fully stabilized co-doped system revealed a pure ionic conduction behavior up to 800 Ā°C with wide electrolytic domain. In the 700ā€“800 Ā°C range, the ionic conductivity of co-doped specimens is similar to that of pure zirconia-scandia.
  • Artigo IPEN-doc 21732
    Sintering and electrical conductivity of gadolinia-doped ceria
    2016 - BATISTA, R.M.; FERREIRA, A.M.D.C.; MUCCILLO, E.N.S.
    Bulk specimens of Ce0.9Gd0.1O2-delta prepared with powders within a range of specific surface area were sintered in oxidizing, inert, and reducing atmospheres. The aim of this work is to investigate the effects of the sintering atmosphere on the microstructure and grain and grain boundary conductivities of the solid electrolyte. The lattice parameter determined by Rietveld refinement is 0.5420(1) nm, and the microstrain was found negligible in the powder materials. Specimens sintered in the Ar/4 % H-2 mixture display larger average grain sizes independent on the particle size of the starting powders. The grain and grain boundary conductivities of specimens sintered under reducing atmosphere are remarkably lower than those sintered under oxidizing and inert atmospheres. The activation energy (similar to 0.90 eV) for total electrical conductivity remains unchanged with both the initial particle size and the sintering atmosphere.