PEDRO ARTHUR AUGUSTO DE CASTRO
33 resultados
Resultados de Busca
Agora exibindo 1 - 10 de 33
Artigo IPEN-doc 28982 Nd:YAG laser on dental enamel in the reduction of artificial caries demineralization2019 - ZEZELL, DENISE M.; SILVA, MATEUS R.; CASTRO, PEDRO A.A.; SILVA, TANIA M.; GONCALVES, SERGIO E.P.Nd:YAG-laser associated to a photoabsorber, in the reduction of artificial caries in enamel was evaluated. Eighty bovine specimens with 6mm diameter and 2mm high were obtained and a half of the surface of each was protected as a control. Microdurometer and FTIR were performed initially and 8 groups (n=10) were obtained according to treatments: G1(- control): no-treatment; G2(+control): fluorophosphate; G3(Nd:YAG 60mJ/pulse, 10Hz, 48J/cm2, non-contact); G4(photoabsorber + Nd:YAG 60mJ); G5(Nd:YAG 80mJ/pulse, 10Hz, 64J/cm2); G6(photoabsorber + Nd:YAG 80mJ); G7(Nd:YAG 100mJ/pulse, 10Hz, 80J/cm2); G8(photoabsorber + Nd:YAG 100mJ). De-remineralization cycle were performed for induction of artificial caries and to interferometer, microdurometer and FTIR. Microhardness data were submitted to 2-way ANOVA and Tukey/Dunnett tests 5%. Statistically differences were obtained in the photoabsorberfactor individually and in the interaction between laser and photoabsorber. There was a lower percentage of microhardness loss in the groups with photoabsorber; G8 presented microhardness similar to G2. FTIR data were submitted to T-test 5%. Compared with G2, higher concentrations of carbonate were found in G4, G6 and G8; phosphate in G8; lower Amide-I concentration at G8 and higher Carbonate/Phosphate ratio at G4 and G6. The interferometry results were submitted to 3-way ANOVA of repeated measures 5%. There were statistically differences in the photoabsorber-factor individually and in the time-factor. Photoabsorber decreased the demineralization; Nd:YAG-laser without photoabsorber were less effective than fluoride; Nd:YAG-laser 100mJ with photoabsorber was as effective as fluoride and; the Nd:YAG-laser, associated or not to the photoabsorber, was no more effective than fluoride in the reduction of artificial decay.Resumo IPEN-doc 27994 Assessment of burn wounds status using mid-infrared spectroscopy2019 - CASTRO, PEDRO; LIMA, CASSIO; ZORN, TELMA; ZEZELL, DENISE M.Burns are one of the major causes of morbidity and the most costly traumatic injuries worldwide. Better understanding of the molecular mechanisms associated with wound healing might provide improved clinical strategies to speed up the tissue repair process and reduce the global impact of burns on public health services. The traditional techniques used to assess the biochemical events related to wound repair are laborious, time-consuming and require multiple staining. Thus, the present study aims to evaluate the feasibility of Fourier transform infrared (FTIR) spectroscopy in order to monitor the progress and healing status of burn wounds. Third-degree burn injuries were induced on Wistar rats by water vapor exposure. Afterwards, biopsies specimen was extracted for further histopathological examination and spectroscopic evaluation at 4 time-points (3, 7, 14 and 21 days). Raw spectral data were offset-corrected and normalized by amide I band area. The second derivatives were compared by the Principal Component Analysis (PCA). On days 3 and 7, when compared to healthy group, biomolecules bands were most prominent. However, on days 14 and 21, these molecular bands decreased. Therefore, our pairwise comparison revealed that metabolic activity induced by thermal injury decreases as the healing process progresses. Our findings show that FTIR spectroscopy can monitor the biochemical development induced by burn injury and detect the status of wound repair.Resumo IPEN-doc 27993 Analysis of ceramic laminates removal with Er,Cr:YSGG laser by optical coherence tomography2019 - ZANINI, NATHALIA; ZAMATARO, CLAUDIA B.; RABELO, THAIS F.; JUVINO, AMANDA C.; KUCHAR, NIELSEN G.; CASTRO, PEDRO; ANA, PATRICIA da; ZEZELL, DENISEPorcelain laminated veneers have been widely used. For wear of hard tissue such as enamel and dentin, the diamond rotary instrument is the most traditional, but the laser has become recently used to remove aesthetic facets. Optical coherence tomography (OCT) used as an optical biopsy, is important for morphological analysis and attenuation coefficient is related to the property of the photons to be scattered by the samples. After approval by the Ethics Committee, the present study investigated the detachment of 30 ceramic E-max fragments cemented in human dental enamel of dimensions 3mm x 3mm x 0.7mm with 3 types of resin cements, RelxY Veneer, Relx U200 and Variolink Veneer. The samples (Enamel + Ceramic Fragment) were randomly distributed in the 3 groups and cemented according to the manufacturer. After that, they were prepared for irradiation with the Er,Cr: YSSG laser under predetermined conditions (3.5 and 3W, 20Hz, 60% water and 40% air flow). OCT analysis was done before and after irradiation. We observed that themorphological changes of the enamel surface showed an increased surface area due to the cement remaining in the enamel.We concluded that the Er, Cr: YSGG laser, when used in the irradiation protocol tested, seems to be a safe tool for the removal of laminates.Resumo IPEN-doc 27992 Removal of laminates with Er,Cr:YSGG laser from dental enamel submitted to gamma radiation2019 - RABELO, THAIS F.; ZAMATARO, CLAUDIA B.; ZANINI, NATHALIA; JUVINO, AMANDA C.; KUCHAR, NIELSEN G.; CASTRO, PEDRO A.A.; ZEZELL, DENISE M.Background: Modern Dentistry is characterized by the search for aesthetic perfection in the smile. Many efforts are made regarding procedures related to manufacturing, cementing, maintenance and removal of ceramic laminates. The laser removal of laminates has become more frequent when the aesthetical procedures needs to be replaced. On the other hand, the head and neck cancer treatment causes comorbidities in the buccal environment when laminates are in place. Objective: To evaluate in vitro the removal of ceramic fragments by means of Er,Cr:YSGG laser irradiation, after gamma radiation. Methods: 20 Lithium disilicate veneers were cemented with Variolink to human dental enamel and then samples were irradiated with 0.07 kGy. After gamma irradiation, the laminates removal with Er,Cr:YSGG laser was performed. The control group was not subjected to gamma radiation. Dental enamel samples were analyzed by Scanning Electron Microscopy (SEM), Fourier Transformed Infrared Spectroscopy (FTIR) and Surface Microhardness Loss (SMH). Results: SEM has shown that less cement was found after removal of the facets in gamma irradiated group when compared to the control. For both groups there was alteration of the SMH possibly due to the use of the adhesive system. When performed intra group analysis, the sample being its own control of baseline in the FTIR analysis, there were no band shifts or formation of new compounds on the surface of human dental enamel. Conclusions: The Er,Cr:YSGG laser is an effective alternative for laminates removal in human dental enamel even when it is subjected to gamma radiation.Resumo IPEN-doc 27991 Calcium analysis of gamma sterilized human dentin submmited to Er,Cr:YSGG laser irradiation2019 - KUCHAR, NIELSEN G.; ZAMATARO, CLAUDIA B.; RABELO, THAIS; JUVINO, AMANDA; ZANINI, NATHALIA; CASTRO, PEDRO; ZEZELL, DENISE M.Studies report that gamma radiation changes the oral cavity of patients submitted to radiotherapy. These changes include xerostomia, resulting in an unsaturation of calciumand phosphate in the oral cavity. However, human enamel samples isolated from the altered oral environmentwhen irradiatedwithgamma radiation at doses of up to 25kGy (much higher than radiotherapy doses) were shown to have undergone no changes in molecular hardness or micro surface. After approval of the Research Ethics Committee, 20 human dentin samples were evaluated before and after irradiation, split randomly into control group (n = 10) and irradiated group (n = 10) treated with 25.0 kGy at the Co60 multipurpose irradiator and irradiated with Er,Cr:YSGG laser in the parameters: 8.5 J/cm2 in the Fourier Transform Infrared Spectroscopy (FTIR), % surface Microhardness loss and Scanning Electron Microscopy (SEM). At the end, acidic biopsies were performed to quantify the concentration of calcium present in the samples. In the results of FTIR analysis differences were found only in the bands of organic content and in the inorganic content, difference were not found between before and after irradiations. The EDS and % Surface Microhardness loss analysis corroborates these findings, as well as no significant loss of the Calcium content before and after their radiation with Co60 at 25 kGy and with the Er,Cr:YSGG laser. These findings lead us to a new hypothesis of behavior of the hydroxyapatite crystal submitted to the gamma irradiation.Resumo IPEN-doc 27990 Er,Cr:YSGG laser irradiation associated to fluoride for in situ model using gamma sterilized dentin and enamel2019 - ZAMATARO, CLAUDIA B.; RABELO, THAIS F.; ZANINI, NATHALIA; JUVINO, AMANDA C.; KUCHAR, NIELSEN G.; CASTRO, PEDRO A.L.; ANA, PATRICIA A. da; ZEZELL, DENISE M.The in situ intraoral model uses human dental enamel samples (HDE) in order to analyse the de-remineralization processes using the buccal environment without interfering into the patients’ natural dentition. The main ethical concern from this model is the biosafety. Gamma radiation is a very efficient sterilization method that is not expected to alter the mineral content of the hard tissues, avoiding biases in the results. Thus 40 HDE samples were irradiated through a source of 60Co multipurpose irradiator aiming complete sterilization (25 KGy/h) with the purpose of accumulating the native plaque on them at an in situ study. An Er,Cr:YSGG laser was used alone and in combination with the topical applications of: 1-dentifrice (1,100 lg F-/g) or 2-APF (12,300 lg F-/g). Morphological analyses were performed by scanning electron microscopy (SEM), determination of alkali-soluble fluoride concentration by specific ion electrode and microhardness determination. Then, the 15 volunteers used palatal devices containing previously treated HDE samples and remained using F dentifrice. The FTIR findings established that gamma radiation could be used aiming HDE sterilization. The Knoop hardness number was within the range of that of natural dentin of human origin. X-ray fluorescence shows that irradiated dentin has great similarity with natural dentin from the point of view of chemical composition. SEM analyses showed that there was no thermal damage or interprismatic morphological changes in the hydroxyapatite structure of human dental dentin outside the buccal environment when using doses of gamma irradiation up to 25 kGy.Resumo IPEN-doc 27989 In vitro determination of the critical pH demineralization of human dental enamel irradiated with Nd:YAG laser associated with fluoridated product2019 - JUVINO, AMANDA C.; ZAMATARO, CLAUDIA B.; RABELO, THAIS F.; KUCHAR, NIELSEN G.; ZANINI, NATHALIA; CASTRO, PEDRO; ZEZELL, DENISEThe use of fluoride products associated with high intensity laser irradiation are beneficial for dental caries prevention because it increases the surface area, improving the formation of fluorapatite (FA), which gives greater acid-resistance of enamel against bacterial acids. The objective of this study is to determine the critical pH of dental enamel treated with acid fluoride phosphate 12,300 lF-/g (APF) and Nd:YAG laser 84 J/cm2, as there is no precedent to determine this pH. The study consisted of 4 groups (n = 15): G1: Negative Control; G2: APF; G3: Nd:YAG; G4: APF + Nd:YAG. Each group was randomized into three subgroups (n = 5) for pH cycling. The cycling was designed to simulate three conditions: below critical pH of enamel hydroxyapatite (pH 5.0); pH below critical for hydroxyapatite and fluorapatite (pH 4.5); condition further below the critical situation to investigate extent of acid resistance of the enamel (pH 4.0). The samples were analyzed by scanning electron microscopy (SEM), Fourier infrared spectroscopy (FTIR) and solutions were quantified fluoride (specific ion electrode) and phosphate (colorimetric method). In SEM and FTIR (phosphate band) at pH 5, only the APF and APF + Nd:YAG groups did not present demineralization. At pH 4.5, only the APF + Nd:YAG group was integrated. At pH 4, APF + Nd:YAG showed signs of mild demineralization while the other groups showed aggressive signals. It is concluded that the irradiated fluorapatite has critical dissolution pH different from fluorapatite formed only with the application of fluorine.Resumo IPEN-doc 27554 Comportamento da hidroxiapatita do esmalte e da dentina frente à radiação ionizante in vivo e in vitro2019 - KUCHAR, NIELSEN G.; ZAMATARO, CLAUDIA B.; ZANINI, NATHALIA; RABELO, THAIS F.; JUVINO, AMANDA C.; SOGLIA, VICTOR; CASTRO, PEDRO A.A.; ZEZELL, DENISEArtigo IPEN-doc 27155 Human dental enamel evaluation after radiotherapy simulation and laminates debonding with Er,Cr:YSGG using SEM and EDS2019 - RABELO, THAIS F.; ZAMATARO, CLAUDIA B.; KUCHAR, NIELSEN G.; ZANINI, NATHALIA; JUVINO, AMANDA C.; DEL-VALLE, MATHEUS; CASTRO, PEDRO A.A.; SANTOS, MOISES O.; ZEZELL, DENISE M.The pursuit of perfection makes younger people undergo aesthetic procedures without formal indication. However, young patients may be susceptible to a disease such as head and neck cancer which treatment can compromise the adhesion of these indirect mate-rials. Here, we present an analyze, of the gamma radiation effects on crystallographic morphology of human dental enamel after laminate veneer debonding with Er,Cr:YSGG laser. Thus, human dental enamel samples were prepared and randomized into 2 groups (n=10): Laser Irradiation (L) and Gamma + Laser Irradiation (GL) group. Scanning elec-tron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were performed before bonding and after debonding using Er,Cr:YSGG. Only Gamma + Laser Irradia-tion group received a cumulative dose of 70 Gy gamma radiation used in head and neck cancer radiotherapy. SEM images showed that both GL and L groups presented altered morphology. EDS showed an decrease in Ca and P intensities after laser debonding of laminates veneers in both group. Therefore, a proper laser facet removal protocol should be established for healthy patients and patients who have been exposed to radiotherapy for head and neck cancer.Artigo IPEN-doc 26768 Infrared Spectroscopy evaluation of burn wound healing2019 - CASTRO, PEDRO A.A. de; ZEZELL, DENISE M.Wound healing is a biological response in order to recover the tissue stability after injury. The impaired healing by thirddegree, when the damage achieves the major part of dermis, is defined in four sequential and overlapping phases: Inflammation, transition, proliferative and maturative1. The role of biochemical cascade associated in each phase are still not fully understood, thus systematic evaluations tests are crucial. In fact, the gold standard to interrogate the molecular signature of wound healing is concern on immunohistochemical analysis. This approach tends to be laborious, timeconsuming and require multiple assays2. Since Fourier transform infrared spectroscopy (FTIR) has been demonstrated in other studies to provide molecular change report upon biological samples, the present study aims to estimate the feasibility of FTIR to discriminate healthy and burned skin throughout wound stages.