FLAVIO KIYOSHI TOMINAGA
5 resultados
Resultados de Busca
Agora exibindo 1 - 5 de 5
Artigo IPEN-doc 30224 Toxicity removal of pharmaceuticals, fluoxetine and caffeine, by electron beam irradiation2023 - BOIANI, NATHALIA F.; REDIGOLO, MARCELO M.; CALVO, WILSON A.; TOMINAGA, FLAVIO K.; BORRELY, SUELI I.The wide use of pharmaceuticals and water scarcity are associated to increasing levels of pharmaceutical compounds discharged into water and wastewater worldwide, affecting relevant ecological services, including biodegradation. However, water pollution has also encouraged studies applying advanced oxidative processes (AOP) in organic pollutant degradation. Among AOPs, ionizing radiation has been proven an effective technology for organic compound removal from waters and wastewater. The objective of this study was to assess Electron Beam (EB) irradiation in the degradation of caffeine and fluoxetine and their binary mixture in pure aqueous solutions. The degradation of these pharmaceuticals was evaluated by GC/MS analyses. The degradation dose response was higher for the caffeine and fluoxetine mixture (1:1) at 2.5 kGy. This dose led to decreased toxicity towards Daphnia similis for both the fluoxetine + caffeine mixture and the isolated fluoxetine solution, but not for the isolated caffeine. On the other hand, Vibrio fischeri exposure for 15 min indicated toxicity removal for the entire pharmaceuticals sample set and radiation dose. Fluoxetine was the most toxic pharmaceutical, followed by the binary mixture. Thus, we suggest ecopharmacovigilance, where attention should be paid to the increasing amount of pharmaceuticals, caffeine and fluoxetine detected in water.Artigo IPEN-doc 29145 Toxicity removal of pharmaceuticals mixtures through electron beam irradiation2022 - BOIANI, N.F.; TOMINAGA, F.K.; BORRELY, S.I.Contamination of the aquatic environment by pharmaceuticals is becoming a global phenomenon of growing concern. Pharmaceuticals are partially metabolized, resulting in the excretion and release of residual into sewage, unaltered or metabolites. The wastewater treatment plants are not designed to eliminate these compounds, leading the residues into the aquatic environment. Besides, pharmaceuticals are not detected individually but as a complex mixture. Advanced oxidative processes have been applied as an alternative or complement to conventional sewage treatment processes, aiming the degradation and removal of toxic pollutants. The objective of this study was to evaluate the toxicity removal of mixtures of pharmaceuticals subjected to electron beam treatment. The aqueous solutions of each pharmaceutical were diluted in ultra-pure water and prepared in three pharmaceuticals combinations: Propranolol + Fluoxetine + Sulfadiazine; Propranolol + Fluoxetine + Diclofenac; Acetylsalicylic acid + Fluoxetine + Metformin). Electron Beam Accelerator was applied for the irradiations and the absorbed doses were 2.5-5.0 kGy. Acute toxicity tests with Daphnia similis were performed to evaluate the toxicity, before and after irradiation.. The data analyzed showed toxicity removal efficiency around 80% for the mixture of Propranolol, Fluoxetine and Diclofenac; 75% for the mixture of Propranolol, Fluoxetine and Sulfadiazine; and 30% for the mixture of Acetylsalicylic acid, Fluoxetine and Metformin. According to the literature, this is a viable technology for the removal of toxicity from pharmaceuticals, and the results demonstrated the potential of electron beam irradiation in reducing the toxicity of pharmaceutical from different classes.Artigo IPEN-doc 28290 Toxicity removal of pharmaceuticals mixtures through electron beam irradiation2021 - BOIANI, N.F.; TOMINAGA, F.K.; BORRELY, S.I.Artigo IPEN-doc 27785 Is ionizing radiation effective in removing pharmaceuticals from wastewater?2021 - TOMINAGA, FLAVIO K.; SILVA, THALITA T.; BOIANI, NATHALIA F.; JESUS, JULIANA M.S. de; TEIXEIRA, ANTONIO C.S.C.; BORRELY, SUELI I.Wastewater and effluent discharges are the main causes of receiving water body pollution and important challenges in water quality management. Among the emerging contaminants, pharmaceuticals have increasingly drawn attention due to their incomplete removal during conventional biological treatment, inducing potential and actual risks to living organisms following residue discharges in river effluent. Electron beam irradiation (EBI) is a clean process technology for organic compound degradation and mineralization, as well as persistent pollutant detoxification. This study aimed to evaluate EBI effects on the degradation and toxicity removal of anti-inflammatory aspirin (ASA) in a single solution and in a fluoxetine (FLX) mixture. Results indicate that 98% of the single aspirin was degraded at 5.0 kGy. Aspirin toxicity to Daphnia similis, however, increased with increasing absorbed dose (1.0 to 5.0 kGy), possibly as a result of the presence of H2O2 and other byproducts formed during the oxidation process. Regarding the irradiated mixture, complete degradation was achieved for both pharmaceuticals. Toxicity removals for the mixture were of 56.2 ± 0.9% and 58.8 ± 5.4% for 1.0 and 2.5 kGy, respectively. These findings demonstrate that EBI can be an interesting alternative process to be applied as a pre-treatment followed by biological treatment.Artigo IPEN-doc 20998 Ecotoxicological study of pharmaceutical mixture in water solution and its tretability2015 - TOMINAGA, FLAVIO K.; BOIANI, NATHALIA F.; GRANIERI, REGINALDO I.; BORRELY, SUELI I.