FABIANA DE FARIA LAINETTI

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • Resumo IPEN-doc 29483
    Development and construction of a mobile electron beam accelerator to treat and recycle industrial effluents in Brazil
    2022 - CALVO, WILSON A.P.; SOMESSARI, SAMIR L.; DUARTE, CELINA L.; SPRENGER, FRANCISCO E.; FEHER, ANSELMO; LAINETTI, FABIANA de F.; GASPER, RENATO R.; BRAGA, ALCIDES; RODRIGUES, MARCOS; SAMPA, MARIA H.O.
    In the world, there is a growing increase in the demand for water for human consumption, as well as the prioritization of the use of available water resources for public supply. The treatment of wastewater and industrial effluents by electron beam irradiation is a promising technique, however, not very widespread in Brazilian territory. The design and construction of a mobile unit by the Nuclear and Energy Research Institute (IPEN/CNEN), containing an electron beam accelerator of 0.7 MeV, 20 kW and 640 mm window is innovative to demonstrate the effects and positive results of this technology. The mobile unit will have as one of its main advantages the possibility of treating effluents in the place where the source is located, eliminating costs and bureaucratic problems associated with the transportation of waste, besides publicizing the technology in several places in the country. To implement the project, IPEN/CNEN has been consolidating partnerships with national and international companies. The resources for the development of the unit have been supplied by the Brazilian Innovation Agency (FINEP) and International Atomic Energy Agency, financing the “IAEA TC Project BRA1035 - Mobile electron beam accelerator to treat and recycle industrial effluents”. The Institute has associated with a specialized company (Truckvan Industry) in an innovation project for the unit design and development. Several meetings have been realized with the company and the International Atomic Energy Agency experts, aiming the compatibility of the design and the exchange of information necessary for the project development. The idealized project divides the cart in the following modules: a) control room and laboratory for technical and scientific dissemination of the technology; b) industrial electron beam accelerator, hydraulic units, ventilation system, cooler and bunker with irradiation device; and c) transformer and power source supply. A 3D model study of the control room and laboratory space was done to facilitate understanding the internal distribution of the laboratory analysis equipment (Gas Chromatography Mass Spectrometry, Total Organic Carbon and UV-Visible Spectroscopy). The irradiation system with electron accelerators allows treating different types of effluents. Depending on the effluent, the amount of ionizing radiation energy required for treatment may vary, as well as the amount of treated effluent per day. For the construction of the mobile unit, the estimated cost is about US$ 1.5 Million. The type of treated effluent, the treatment cost per m3/day and other information regarding the cost of maintenance and operation of the mobile unit are obtained from the Business Plan of the Mobile Unit.
  • Artigo IPEN-doc 28327
    Developing an electrical power system of a mobile electron beam accelerator to treat wastewater and industrial effluents
    2021 - GASPER, RENATO R.; SOMESSARI, SAMIR L.; SPRENGER, FRANCISCO E.; FEHER, ANSELMO; DUARTE, CELINA L.; SAMPA, MARIA H. de O.; LAINETTI, FABIANA de F.; BRAGA, ALCIDES; RODRIGUES, MARCOS de M.; CALVO, WILSON A.P.
    The treatment of wastewater and industrial effluents by electron beam irradiation is a promising technique, however, not very widespread in Brazilian territory. The design and construction of a mobile unit by the Nuclear and Energy Research Institute, containing an electron beam accelerator of 700 keV and 20 kW is innovative to demonstrate the effects and positive results of this technology. The aim is to transfer the mobile unit to several companies with interest in liquid waste treatment, connect to the industry electrical system and start the ionization treatment process through electron beam. The mobile unit connection to the local electrical system may be a challenge due to the great diversity of voltages and distances involved, as well as the large injections of harmonic content generated by the electron beam accelerator that can affect sensitive loads in the industrial system. In this work, an analysis of the electrical power system of the mobile unit was made, regarding the interruption capacity, selectivity protection and adequate short circuit levels, in order to assure a greater reliability in the operation. At the end, the control panel of the mobile unit, simulations and measurements were carried out at the 1.5 MeV and 37.5 kW electron beam accelerator, installed in the Radiation Technology Center, demonstrating the necessity of applying a filter to reduce the measured harmonic distortion. The analysis of the mobile unit electrical power system was made, in order to assure a greater reliability in the operation.
  • Artigo IPEN-doc 27970
    Developing an electrical power system of a mobile electron beam accelerator to treat wastewater and industrial effluents
    2019 - GASPAR, R.R.; SOMESSARI, S.L.; SPRENGER, F.E.; FEHER, A.; DUARTE, C.L.; SAMPA, M.H.O.; LAINETTI, F.F.; FUGA, D.F.; RODRIGUES, M.; CALVO, W.A.P.
    The treatment of wastewater and industrial effluents by electron beam irradiation is a promising technique, however, not very widespread in Brazilian territory. The design and construction of a mobile unit by the Nuclear and Energy Research Institute, containing an electron beam accelerator of 700 keV and 20 kW is innovative to demonstrate the effects and positive results of this technology. The aim is to transfer the mobile unit to several companies with interest in liquid waste treatment, connect to the industry electrical system and start the ionization treatment process through electron beam. The mobile unit connection to the local electrical system may be a challenge due to the great diversity of voltages and distances involved, as well as the large injections of harmonic content generated by the electron beam accelerator that can affect sensitive loads in the industrial system. In this work, an analysis of the electrical power system of the mobile unit was made, regarding the interruption capacity, selectivity protection and adequate short circuit levels, in order to assure a greater reliability in the operation. At the end, the control panel of the mobile unit, simulations and measurements were carried out at the 1.5 MeV and 37.5 kW electron beam accelerator, installed in the Radiation Technology Center, demonstrating the necessity of applying a filter to reduce the measured harmonic distortion. The analysis of the mobile unit electrical power system was made, in order to assure a greater reliability in the operation.
  • Artigo IPEN-doc 27969
    Architectural design of a mobile irradiation unit for the treatment of industrial effluents in Brazil
    2019 - LAINETTI, F.F.; DUARTE, C.L.; SOMESSARI, S.L.; SPRENGER, F.E.; FEHER, A.; SAMPA, M.H.O.; GASPAR, R.R.; FUGA, D.; RODRIGUES, M.; CALVO, W.A.P.
    The Nuclear and Energy Research Institute (IPEN-CNEN/SP) decided to develop and build a mobile beam irradiation unit for the treatment of industrial effluents. The mobile unit will have as one of its main advantages the possibility of treating effluents in the place where the source is located, eliminating costs and bureaucratic problems associated with the transportation of waste, besides publicizing the technology in several places in Brazil. To implement the project, IPEN-CNEN/SP has been consolidating partnerships with national and international companies. The resources for the development of the unit have been supplied by the Brazilian Innovation Agency (FINEP) and International Atomic Energy Agency, financing the IAEA TC Project BRA1035 – Mobile electron beam accelerator to treat and recycle industrial effluents. The Institute hired a specialized company (Truckvan Industry) for the unit design and development. Several meetings have been realized with the company and the IAEA experts aiming the compatibility of the design and the exchange of information necessary for the project development. Regarding the mobile lab, several layout options have been developed to better meet the needs of each device and its users. The layout has been discussed with the objective of facilitating the maintenance of the equipment; the well-being and ergonomics of operators; optimization of spacing and also to make compatible the need for the presence of equipment and space for operators. Thus, several studies have been prepared to allow the discussion between the areas involved and to optimize the project, as well as the visualization of the spaces available. In this paper is presented the approach adopted for the architectural design of a mobile irradiation unit in Brazil.