DANIELA PASSARELO MOURA
4 resultados
Resultados de Busca
Agora exibindo 1 - 4 de 4
Resumo IPEN-doc 27025 Analysis by optical microscopy and x-ray diffraction of composite Cu-Cr-Ag-Al2O3 synthesized using powder metallurgy2017 - FONSECA, DANIELA P.M. da; MONTEIRO, WALDEMAR A.The use of Nature's materials in favor of human beings has been present in its daily life for a long time, copper and its alloys have been used in function of the high thermal and electrical conductivity, good mechanical properties, resistance to corrosion, ease of fabrication and also by the high value of scrap [1]. Metal alloys can also be combined with other classes of materials in order to obtain new properties, superior to the original alloy, this union of two or more materials forms a composite [2]. The studied composite has a ternary metal alloy (copper, chromium and silver) as a matrix and a ceramic oxide (alumina) as the reinforcing phase. The addition of chromium, silver and small amounts of finely dispersed metal oxides in copper improves their mechanical properties and increases the operating temperature, causing little loss of conductivity. A possible application of this composite is in electrical contacts, electronic devices that break the passage of current in electrical circuits [1]. The objective of this study was the microstructural characterization by optical microscopy and X-ray diffraction of the composite Cu-Cr-Ag-Al2O3 processed by powder metallurgy. The samples used were fabricated in laboratory scale of 25 mm diameter, 3,5 mm ℎ 4,0 mm of height and 6,5 g of mass, with the following chemical compositions: (a) 85% Cu – 15% Al2O3; (b) 90% Cu – 5% Cr – 2% Ag – 3% Al2O3; (c) 90% Cu – 5% Cr – 5% Al2O3; (d) 90% Cu – 7% Cr – 3% Al2O3; (e) 85% Cu – 5% Cr – 5% Ag – 5% Al2O3; (f) 90% Cu – 5% Cr – 3% Ag – 2% Al2O3; (g) 90% Cu – 3% Cr – 7% Al2O3. In order to obtain the samples, the powders were weighed on a precision balance (according to each composition), mixed manually and cold-compacted in uniaxial press with 450 MPa pressure and sintered in an EDG furnace under 10-3 torr of mechanical vacuum and 650 °C in 6 h. The samples were prepared metallographically and observed in an optical microscope, the micrographs indicated coalescing of the copper particles and other metallic elements and formation of porosity (figure 1). The X-ray diffraction data were collected for samples (a) and (e) using graphite monochromator, copper tube, 25º ≤ 2θ ≥ 90º and Δ2θ = 0,02, from the diffractograms the mean crystallite size (𝐷) and microdeformation (𝜖) were calculated using the Williamson-Hall graphical method where the approximate line has a linear coefficient equal to 1/𝐷 and the angular coefficient is equal to 4𝜖/𝜆 [3]. In both samples were identified the expected phases, in agreement with the composition, and an undesirable phase of copper oxide (figure 2). The Williamson-Hall method was not used for all phases because it requires the identification of at least three peaks. Optical micrographs indicated presence of porosity inside the structure and partial homogeneity, due to the non-dissolution of the elements involved in the metal alloy, it is necessary to do further special thermal treatments. In some samples, a third phase was recognized, whose composition demands microanalyses to be properly identified. Through the diffractograms it was possible to identify the phase of copper oxide possibly coming from the sintering stage, this phase is not desirable or this composite because it negatively influences its electrical and mechanical properties. The Williamson-Hall method obtained a straight line with good correlation and suitable values of mean crystallite size and microdeformation for the copper phase.Artigo IPEN-doc 26671 The microstructure and properties of copper with ceria nanoparticles addition2019 - FONSECA, DANIELA P.; MONTEIRO, WALDEMAR A.Copper-based composites strengthened by ceria nanoparticles were processed by conventional powder metallurgy: mixing (30 min and 46 rpm), compaction (cold, uniaxial, 1080 MPa for 10 s) and sintering (800˚C for 6 h in vacuum atmosphere of 10−5 torr). It was studied the microstructure (optical microscopy, scanning electron microscopy), X-ray diffraction with Rietveld refinement and some properties (electrical conductivity, Vickers hardness and fracture analysis) of the compositions 92 wt% Cu - 8 wt% CeO2 and 80 wt% Cu - 20 wt% CeO2. The results showed uniform phase distribution, low porosity and ceria disperse inside copper grain. In despite of properties, the composites had electrical conductivity of 38% IACS and 15% IACS and hardness of 69 and 88 HV5, respectively. The results of 92 wt% Cu - 8 wt% CeO2 composites were promising, and they are in according with actual literature.Artigo IPEN-doc 25302 Processamento, microestrutura e propriedades de compósitos à base de cobre reforçados com alumina2018 - FONSECA, D.P.M. da; MONTEIRO, W.A.O cobre e suas ligas são utilizados por suas boas propriedades físicas, a adição de fase cerâmica pode aumentar a resistência mecânica e a resistência ao desgaste sem causar grande perda na estabilidade térmica e condutividade elétrica. Este trabalho teve como objetivo processar por metalurgia do pó e estudar a microestrutura e propriedades de compósitos à base de cobre reforçados com alumina. As análises de MO, MEV e EDS indicaram boa distribuição das fases na matriz de cobre, boa coalescência das partículas formando superfície continua e baixa porosidade. O aumento da concentração de alumina diminuiu a condutividade elétrica, no entanto, proporcionou bom incremento na dureza do cobre puro.Dissertação IPEN-doc 25229 Processamento, microestrutura e propriedades de compósitos à base de cobre reforçados com alumina e céria2018 - FONSECA, DANIELA P.M. daCompósitos de matriz metálica combinam diferentes classes de materiais a fim de obter novas propriedades, superiores às dos materiais originais. A adição de partículas cerâmicas (reforço) em ligas de cobre pode melhorar suas propriedades mecânicas sem gerar grande perda na condutividade elétrica. Este trabalho teve como objetivo processar e estudar a microestrutura e propriedades (condutividade elétrica, dureza e fratura) de compósitos à base de cobre reforçados com alumina e céria. As amostras foram processadas pela técnica de metalurgia do pó: pesagem, mistura (sem bolas por 30min a 46 rpm), compactação (uniaxial à frio com pressão de 1080 Mpa por 10s) e sinterização (800°C por 6h sob vácuo de 10-5 torr). As análises de MO, MEV, EDS e DRX (com refinamento Rietveld) indicaram boa coalescência das partículas, formando superfície continua e com baixa porosidade. A alumina formou regiões aglomeradas da ordem de 20 μm, a céria ficou finamente dispersa nos contornos de grão do cobre com algumas regiões aglomeradas, o cromo formou regiões de cerca de 100 μm e não teve distribuição completamente uniforme ao longo da matriz, a prata formou solução sólida com o cobre e, durante o resfriamento lento, formou precipitados menores do que 5 μm uniformemente dispersos no interior dos grãos de cobre. Os compósitos apresentaram condutividade elétrica entre 15 e 40 %IACS, dureza entre 62 e 88 HV5 e as fractografias apresentaram fratura mista e regiões indicando boa adesão matriz-reforço. Em relação ao cobre puro, foi observado efetivo aumento na dureza (cerca de 2x), porém, em todos os compósitos, o acréscimo da fase cerâmica acarretou na diminuição da condutividade elétrica. Os compósitos de Cu-8%(Al2O3, CeO2) foram os que apresentaram melhor equilíbrio entre essas duas propriedades, com condutividade de 40 e 38 %IACS e dureza de 63 e 69 HV5.