NATALIE COSTA ROLINDO
3 resultados
Resultados de Busca
Agora exibindo 1 - 3 de 3
Artigo IPEN-doc 29635 Prospects for fungal bioremediation of unburied waste packages from the Goiânia radiological accident2023 - TESSARO, ANA P.G.; ARAUJO, LEANDRO G. de; SILVA, THALITA T.; COELHO, EDNEI; CORREA, BENEDITO; ROLINDO, NATALIE C.; VICENTE, ROBERTOGoiânia, the Goiás State capital, starred in 1987, where one of the largest radiological accidents in the world happened. A teletherapy machine was subtracted from a derelict radiotherapy clinic and disassembled by scavengers who distributed fragments of the 50 TBq 137CsCl source among relatives and acquaintances, enchanted by the blue shine of the substance. During the 15 days before the accident was acknowledged, contaminated recycling materials were delivered to recycling factories in four cities in the state of São Paulo, Brazil, in the form of recycling paper bales. The contaminated bales were spotted, collected, and stored in fifty 1.6 m3 steel boxes at the interim storage facility of the Nuclear and Energy Research Institute (IPEN). In 2017, a check of the content was performed in a few boxes and the presence of high moisture content was observed even though the bales were dry when conditioned and the packages were kept sealed since then. The main objective of this work was to report the fungi found in the radioactive waste after they evolved for 30 years in isolation inside the waste boxes and their role in the decay of the waste. Examination of the microbiome showed the presence of nematodes and fungal communities. The fungi species isolated were Aspergillus quadricinctus, Fusarium oxysporum, Lecanicillium coprophilumi, Scedosporium boydii, Scytalidium lignicola, Xenoacremonium recifei, and Pleurostoma richardsiae. These microorganisms showed a significant capacity to digest cellulose in our trials, which could be one of the ways they survive in such a harsh environment, reducing the volume of radioactive paper waste. These metabolic abilities give us a future perspective of using these fungi in biotechnology to remediate radioactively contaminated materials, particularly cellulose-based waste.Capítulo IPEN-doc 29464 Further analyses of the unburied Goiania accident packages2021 - SMITH, RICARDO B.; TESSARO, ANA P.G.; ROLINDO, NATALIE C.; VICENTE, ROBERTOIn 1987, in the city of Goiania, Brazil, a derelict teletherapy machine was disassembled by scavengers and Cs-137 was released in the environment, unleashing the biggest radiological accident in Brazil. During the 15 days before the accident was acknowledged, some contaminated materials were sold and delivered to recycling factories in a few cities in the state of Sao Paulo, Brazil, in the form of metal scrap and recycled paper bales. The contaminated material was then collected, the metal scrap was conditioned in forty-three 200-liter drums, and the paper bales were stored in fifty 1.6 cubic meter steel boxes at the interim storage of the Nuclear and Energy Research Institute (IPEN), in the city of Sao Paulo, and there remained ever since. In 2017, 30 years later, initial analyses were performed at a sample of these boxes, checking for their activity, weight, and incongruences between the original values recorded at the time of collection and the measurement results 30 years later. The results indicated that none of the boxes checked were close to the clearance limit and that, without any sort of treatment, this radioactive waste should be stored for at least 150 years more. Visual inspection could not be performed at that time. Nowadays, some of the boxes were opened and samples from the contaminated material inside were taken for analysis. The main objective of this work is to report the results from the evaluation of the physical state of this material. After these analyses, the treatment options for volume reduction that were previously proposed were reviewed, and the method that best suits the current characteristics of the waste was chosen.Artigo IPEN-doc 27337 Further analyses of the unburied Goiania Accident packages2019 - SMITH, RICARDO B.; TESSARO, ANA P.G.; ROLINDO, NATALIE C.; VICENTE, ROBERTOIn 1987, in the city of Goiania, Brazil, a derelict teletherapy machine was disassembled by scavengers and Cs-137 was released in the environment, unleashing the biggest radiological accident in Brazil. During the 15 days before the accident was acknowledged, some contaminated materials were sold and delivered to recycling factories in a few cities in the state of Sao Paulo, Brazil, in the form of metal scrap and recycled paper bales. The contaminated material was then collected, the metal scrap was conditioned in forty-three 200-liter drums, and the paper bales were stored in fifty 1.6 cubic meter steel boxes at the interim storage of the Nuclear and Energy Research Institute (IPEN), in the city of Sao Paulo, and there remained ever since. In 2017, 30 years later, initial analyses were performed at a sample of these boxes, checking for their activity, weight, and incongruences between the original values recorded at the time of collection and the measurement results 30 years later. The results indicated that none of the boxes checked were close to the clearance limit and that, without any sort of treatment, this radioactive waste should be stored for at least 150 years more. Visual inspection could not be performed at that time. Nowadays, some of the boxes were opened and samples from the contaminated material inside were taken for analysis. The main objective of this work is to report the results from the evaluation of the physical state of this material. After these analyses, the treatment options for volume reduction that were previously proposed were reviewed, and the method that best suits the current characteristics of the waste was chosen.