IVAN KORKISCHKO

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Artigo IPEN-doc 28365
    Three-dimensional CFD modeling of H2/O2 HT-PEMFC based on H3PO4-doped PBI membranes
    2021 - PANESI, A.R.Q.; SILVA, R.P.; CUNHA, E.F.; KORKISCHKO, I.; SANTIAGO, E.I.
    A complete non-isothermal model of a HT-PEMFC setup using a PBI/ H3PO4 membrane was developed, modeled, and solved using COMSOL Multiphysics. Polarization curves were simulated and compared to the corresponding experimental data. In this work, a serpentine flow field and an active area of 5 cm2 have been implemented in a computational fluid dynamics (CFD) application. The model predicts water vapor transport, mass concentration of H3PO4, temperature, and membrane current density distribution. In this model, the anode feed is pure hydrogen, and oxygen is introduced at the cathode side. The heat transfer model was coupled with the electrochemical and mass transport; a particular heating configuration is investigated for temperature distribution, emphasizing the membrane. The models showed consistency and were used to investigate the behavior of H3PO4 concentration and all transport characteristics. The concentration of phosphoric acid decreases with increasing temperature and relative humidity and the diffusive flux of water vapor increases with the decrease of the operating voltage. Two different configurations of inlet and outlet flow channels were analyzed and the results were compared.
  • Artigo IPEN-doc 26753
    Modeling and parametric analysis of PEM fuel cells using computational fluid dynamics
    2019 - PANESI, RICARDO; BERUSKI, OTAVIO; KORKISCHKO, IVAN; OLIVEIRA NETO, ALMIR; SANTIAGO, ELISABETE
    This paper presents a parametric investigation of PEMFC electrochemical models employing computational fluid dynamics (CFD) technique and aims to determine the relative importance of each parameter on the modeling results. A compatible and systematic mathematical model is developed in order to study the effect of these parameters. The model is applied to an isothermal, steady state an single phase to observe the main results by a polarization curve. The results compare well with the experimental polarization data obtained at 80 ºC for ohmic and activation regions. The best match with the experimental data is obtained when the specific active surface area of the catalyst layer is 700 cm2/mg and electrolyte conductivity of 8 S/m.