FERNANDO GABRIEL BENITEZ JARA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 1 de 1
  • Resumo IPEN-doc 25388
    Low-temperature reduction of graphene oxide using the HDDR process for electrochemical supercapacitor applications
    2018 - BENITEZ JARA, F.G.; CRUZ, P.V.; BARBOSA, L.P.; CASINI, J.C.S.; PERUZZI, A.J.; SAKATA, S.K.; FARIA, R.N.
    In the present work, attempts of reducing a graphene oxide powder using a low temperature hydrogenation disproportionation desorption and recombination process (L-HDDR) has been carried out. A lower processing temperature in large scale production is significant as far as costs are concerned. Graphite oxide was prepared using a modified Hummers’ method and dispersed in ethanol, exfoliated using ultrasonication to produce Graphene Oxide (GO). Investigations have been carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experimental results of L-HDDR processing graphene oxide powder using unmixed hydrogen at 400°C and relatively low pressures (<2 bars) have been reported. X-ray diffraction patterns showed a reduction of graphene oxide with the L-HDDR process. The results showed that the L-HDDR process, as the standard HDDR process, can be applied to the reduction of graphene oxide to produce supercapacitor materials. The advantage of employing the L-HDDR process is a relatively a low temperature would reduce the cost of treatment that is a very important factor for producing large amount of material. Thus, the L-HDDR process has been considered a promising alternative method of reducing graphene oxide with efficiency and possibly in large scale production.