Reinforcement learning control of robot manipulator

dc.contributor.authorCOTRIM, LUCAS P.pt_BR
dc.contributor.authorJOSE, MARCOS M.pt_BR
dc.contributor.authorCABRAL, EDUARDO L.L.pt_BR
dc.coverageInternacionalpt_BR
dc.date.accessioned2022-03-15T15:41:33Z
dc.date.available2022-03-15T15:41:33Z
dc.date.issued2021pt_BR
dc.description.abstractSince the establishment of robotics in industrial applications, industrial robot programming involves the repetitive and time-consuming process of manually specifying a fixed trajectory, resulting in machine idle time in production and the necessity of completely reprogramming the robot for different tasks. The increasing number of robotics applications in unstructured environments requires not only intelligent but also reactive controllers due to the unpredictability of the environment and safety measures, respectively. This paper presents a comparative analysis of two classes of Reinforcement Learning algorithms, value iteration (Q-Learning/DQN) and policy iteration (REINFORCE), applied to the discretized task of positioning a robotic manipulator in an obstacle-filled simulated environment, with no previous knowledge of the obstacles’ positions or of the robot arm dynamics. The agent’s performance and algorithm convergence are analyzed under different reward functions and on four increasingly complex test projects: 1-Degree of Freedom (DOF) robot, 2-DOF robot, Kuka KR16 Industrial robot, Kuka KR16 Industrial robot with random setpoint/obstacle placement. The DQN algorithm presented significantly better performance and reduced training time across all test projects, and the third reward function generated better agents for both algorithms.pt_BR
dc.format.extent42-53pt_BR
dc.identifier.citationCOTRIM, LUCAS P.; JOSE, MARCOS M.; CABRAL, EDUARDO L.L. Reinforcement learning control of robot manipulator. <b>Revista Brasileira de Computação Aplicada</b>, v. 13, n. 3, p. 42-53, 2021. DOI: <a href="https://dx.doi.org/10.5335/rbca.v13i3.12091">10.5335/rbca.v13i3.12091</a>. Disponível em: http://repositorio.ipen.br/handle/123456789/32793.
dc.identifier.doi10.5335/rbca.v13i3.12091pt_BR
dc.identifier.fasciculo3pt_BR
dc.identifier.issn2176-6649pt_BR
dc.identifier.orcid0000-0001-6632-2692pt_BR
dc.identifier.percentilfiSem Percentilpt_BR
dc.identifier.percentilfiCiteScoreSem Percentil CiteScorept_BR
dc.identifier.urihttp://repositorio.ipen.br/handle/123456789/32793
dc.identifier.vol13pt_BR
dc.relation.ispartofRevista Brasileira de Computação Aplicadapt_BR
dc.rightsopenAccesspt_BR
dc.subjectcontrol equipment
dc.subjectrobots
dc.subjectmanipulators
dc.subjectlearning
dc.subjectartificial intelligence
dc.subjectneural networks
dc.titleReinforcement learning control of robot manipulatorpt_BR
dc.typeArtigo de periódicopt_BR
dspace.entity.typePublication
ipen.autorEDUARDO LOBO LUSTOSA CABRAL
ipen.codigoautor496
ipen.contributor.ipenauthorEDUARDO LOBO LUSTOSA CABRAL
ipen.date.recebimento22-03
ipen.identifier.fiSem F.I.pt_BR
ipen.identifier.fiCiteScoreSem CiteScorept_BR
ipen.identifier.ipendoc28515pt_BR
ipen.identifier.iwosWoSpt_BR
ipen.type.genreArtigo
relation.isAuthorOfPublicationde87f375-d22e-4af7-82ec-48091108be70
relation.isAuthorOfPublication.latestForDiscoveryde87f375-d22e-4af7-82ec-48091108be70
sigepi.autor.atividadeCABRAL, EDUARDO L.L.:496:420:Npt_BR

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
28515.pdf
Tamanho:
1.31 MB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções