Machine learning methods for micro-FTIR imaging classification of tumors and more

dc.contributor.authorZEZELL, DENISE M.pt_BR
dc.coverageNacionalpt_BR
dc.creator.eventoENCONTRO DE OUTONO DA SOCIEDADE BRASILEIRA DE FÍSICA, 45.pt_BR
dc.date.accessioned2022-10-07T17:47:37Z
dc.date.available2022-10-07T17:47:37Z
dc.date.evento10-14 de abril, 2022pt_BR
dc.description.abstractFourier transform infrared micro-spectroscopy imaging (µ-FTIR) has emerged as one of the important tools for studying and characterizing biological materials. It is a label-free technique, relatively simple, reproducible, non-destructive to the tissue and provides accurate results. The vast amount of data and fundamental information obtained from hyperspectral images may not be readily evident. Classical statistics, through its models (parametric and non-parametric) is not able to support the increasing volume of generated data and its high dimensionality. The multivariate analysis of data presents many advantages to be explored, capable of extracting information from the infrared spectra, which go beyond the one-dimensional space, revealing characteristics or properties in the data collected from the samples. The spectral data analysis pipeline, such as the pre-processing steps and the modeling that the Biophotonics Laboratory at Ipen – Cnen, is using in the analysis of biological tissues will be discussed. Results will be presented for body fluids in the disease diagnosis, as well as thyroid, skin and breast tumors, in particular the expression of estrogen and progesterone receptors through tumor biopsies of human cell lines inoculated in mice. µ-FTIR images were collected from histological sections, and six machine learning models were applied and evaluated. The Xtreme gradient boost and Linear Discriminant Analysis showed the best accuracy results, indicating that they are potential models for breast cancer classification tasks.pt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.description.sponsorshipIDFAPESP: 17/50332-0; 21/00633-0pt_BR
dc.description.sponsorshipIDCAPES: 001; PROCAD 88881.068505/2014-01pt_BR
dc.description.sponsorshipIDCNPq: INCT Fotonica 465763/2014-6; PQ 309902/2017-7; SISFOTON 440228/2021-2pt_BR
dc.event.siglaEOSBFpt_BR
dc.identifier.citationZEZELL, DENISE M. Machine learning methods for micro-FTIR imaging classification of tumors and more. In: ENCONTRO DE OUTONO DA SOCIEDADE BRASILEIRA DE FÍSICA, 45., 10-14 de abril, 2022, São Paulo, SP. <b>Resumo...</b> São Paulo, SP: Sociedade Brasileira de Física, 2022. Disponível em: http://repositorio.ipen.br/handle/123456789/33319.
dc.identifier.orcid0000-0001-7404-9606pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0001-7404-9606
dc.identifier.urihttp://repositorio.ipen.br/handle/123456789/33319
dc.localSão Paulo, SPpt_BR
dc.local.eventoSão Paulo, SPpt_BR
dc.publisherSociedade Brasileira de Físicapt_BR
dc.rightsopenAccesspt_BR
dc.subjectfourier transformation
dc.subjectinfrared spectra
dc.subjectanimal tissues
dc.subjectneoplasms
dc.subjecttumor cells
dc.subjectdiagnostic techniques
dc.titleMachine learning methods for micro-FTIR imaging classification of tumors and morept_BR
dc.typeResumo de eventos científicospt_BR
dspace.entity.typePublication
ipen.autorDENISE MARIA ZEZELL
ipen.codigoautor693
ipen.contributor.ipenauthorDENISE MARIA ZEZELL
ipen.date.recebimento22-10
ipen.event.datapadronizada2022pt_BR
ipen.identifier.ipendoc28975pt_BR
ipen.notas.internasResumopt_BR
ipen.type.genreResumo
relation.isAuthorOfPublicationa565f8ad-3432-4891-98c0-a587f497db21
relation.isAuthorOfPublication.latestForDiscoverya565f8ad-3432-4891-98c0-a587f497db21
sigepi.autor.atividadeZEZELL, DENISE M.:693:920:Spt_BR

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
28975.pdf
Tamanho:
199.97 KB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: