An end-to-end approach to autonomous vehicle control using deep learning

Carregando...
Imagem de Miniatura

Data

Data de publicação

Orientador

Título da Revista

ISSN da Revista

Título do Volume

É parte de

É parte de

É parte de

Revista Brasileira de Computação Aplicada
Exportar
Mendeley

Projetos de Pesquisa

Unidades Organizacionais

Fascículo

Resumo
The objective of this work is to develop an autonomous vehicle controller inside Grand Theft Auto V game, used as a simulation environment. It is used an end-to-end approach, in which the model maps directly the inputs from the image of a car hood camera and a sequence of speed values to three driving commands: steering wheel angle, accelerator pedal pressure and brake pedal pressure. The developedmodel is composed of a convolutional neural network and a recurring neural network. The convolutional network processes the images and the recurrent network processes the speed data. Themodel learns fromdata generated by a human driver´s commands. Two interfaces are developed: one for collecting in-game training data and another to verify the performance of themodel for the autonomous vehicle control. The results show that themodel after training is capable to drive the vehicle as well as a human driver. This proves that a combination of a convolutional network with a recurrent network, using an end-to-end approach, is capable of obtaining a good driving performance even using only images and speed velocity as sensory data.

Como referenciar
NOVELLO, GUSTAVO A.M.; YAMAMOTO, HENRIQUE Y.; CABRAL, EDUARDO L.L. An end-to-end approach to autonomous vehicle control using deep learning. Revista Brasileira de Computação Aplicada, v. 13, n. 3, p. 32-41, 2021. DOI: 10.5335/rbca.v13i3.12135. Disponível em: http://repositorio.ipen.br/handle/123456789/32792. Acesso em: 30 Dec 2025.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.

Agência de fomento

Coleções