An end-to-end approach to autonomous vehicle control using deep learning

dc.contributor.authorNOVELLO, GUSTAVO A.M.pt_BR
dc.contributor.authorYAMAMOTO, HENRIQUE Y.pt_BR
dc.contributor.authorCABRAL, EDUARDO L.L.pt_BR
dc.coverageInternacionalpt_BR
dc.date.accessioned2022-03-15T15:36:47Z
dc.date.available2022-03-15T15:36:47Z
dc.date.issued2021pt_BR
dc.description.abstractThe objective of this work is to develop an autonomous vehicle controller inside Grand Theft Auto V game, used as a simulation environment. It is used an end-to-end approach, in which the model maps directly the inputs from the image of a car hood camera and a sequence of speed values to three driving commands: steering wheel angle, accelerator pedal pressure and brake pedal pressure. The developedmodel is composed of a convolutional neural network and a recurring neural network. The convolutional network processes the images and the recurrent network processes the speed data. Themodel learns fromdata generated by a human driver´s commands. Two interfaces are developed: one for collecting in-game training data and another to verify the performance of themodel for the autonomous vehicle control. The results show that themodel after training is capable to drive the vehicle as well as a human driver. This proves that a combination of a convolutional network with a recurrent network, using an end-to-end approach, is capable of obtaining a good driving performance even using only images and speed velocity as sensory data.pt_BR
dc.format.extent32-41pt_BR
dc.identifier.citationNOVELLO, GUSTAVO A.M.; YAMAMOTO, HENRIQUE Y.; CABRAL, EDUARDO L.L. An end-to-end approach to autonomous vehicle control using deep learning. <b>Revista Brasileira de Computação Aplicada</b>, v. 13, n. 3, p. 32-41, 2021. DOI: <a href="https://dx.doi.org/10.5335/rbca.v13i3.12135">10.5335/rbca.v13i3.12135</a>. Disponível em: http://repositorio.ipen.br/handle/123456789/32792.
dc.identifier.doi10.5335/rbca.v13i3.12135pt_BR
dc.identifier.fasciculo3pt_BR
dc.identifier.issn2176-6649pt_BR
dc.identifier.orcid0000-0001-6632-2692pt_BR
dc.identifier.percentilfiSem Percentilpt_BR
dc.identifier.percentilfiCiteScoreSem Percentil CiteScorept_BR
dc.identifier.urihttp://repositorio.ipen.br/handle/123456789/32792
dc.identifier.vol13pt_BR
dc.relation.ispartofRevista Brasileira de Computação Aplicadapt_BR
dc.rightsopenAccesspt_BR
dc.subjectvehicles
dc.subjectautomation
dc.subjectartificial intelligence
dc.subjectneural networks
dc.subjectlearning
dc.titleAn end-to-end approach to autonomous vehicle control using deep learningpt_BR
dc.typeArtigo de periódicopt_BR
dspace.entity.typePublication
ipen.autorEDUARDO LOBO LUSTOSA CABRAL
ipen.codigoautor496
ipen.contributor.ipenauthorEDUARDO LOBO LUSTOSA CABRAL
ipen.date.recebimento22-03
ipen.identifier.fiSem F.I.pt_BR
ipen.identifier.fiCiteScoreSem CiteScorept_BR
ipen.identifier.ipendoc28514pt_BR
ipen.identifier.iwosWoSpt_BR
ipen.type.genreArtigo
relation.isAuthorOfPublicationde87f375-d22e-4af7-82ec-48091108be70
relation.isAuthorOfPublication.latestForDiscoveryde87f375-d22e-4af7-82ec-48091108be70
sigepi.autor.atividadeCABRAL, EDUARDO L.L.:496:420:Npt_BR

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
28514.pdf
Tamanho:
1.83 MB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções