JUSTINE PAULA RAMOS DE OLIVEIRA

Projetos de Pesquisa
Unidades Organizacionais
Cargo

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • Resumo IPEN-doc 25414
    Development of mucoadhesive PVA/CMC based hydrogel for intravesical chemotherapy
    2018 - LIMA, C.S.A.; VARCA, J.O.; FERRARI, A.; NOGUEIRA, K.M.; VARCA, G.H.C.; LUGAO, A.B.
    Bladder cancer (BC) is one of the main diseases that attack the urinary tract and is globally responsible for 165,000 deaths per year. Bladder tumor may be classified as non-muscle invasive (superficial) or muscle invasive. About 70% of patients present the superficial bladder cancer which is treated by transurethral resection for tumor removal followed by intravesical chemo or immunotherapy. The main challenge reported in the instillation of chemotherapy is the limited drug residence time in the bladder as a consequence of urine levels that leads to fast drug removal from the bladder.1 Hydrogels are chemically or physically crosslinked polymer systems that form three-dimensional networks with high water absorption capacity. Carboxymethylcellulose (CMC) is one of the major soluble derivatives of cellulose widely applied in the medical and pharmaceutical fields due to its biocompatibility, nontoxicity, biodegradability and film forming ability.2 Polyvinyl Alcohol (PVA) is a synthetic polymer with wide pharmaceutical and biomedical applications as it is nontoxic, non-carcinogenic, bioadhesive and easy to process.3 In this work, we developed a mucoadhesive hydrogel from a CMC and PVA polymer blend for chemotherapeutic loading and suitable rheological properties for intravesical instillation, especially designed for treating superficial BC with increased residence time of chemotherapeutic agent. Three formulations (C1, C2 and C3) at different CMC concentrations were prepared - 1%, 2% and 3% (w/v), respectively. PVA concentration corresponded to 1% (w/v) for all formulations. The polymers were separately solubilized in Milli-Q water and then mixed prior to the addition of 20% (v/v) glycerin to increase the mucoadhesiveness of the material. The hydrogels were characterized according to their organoleptic and rheological properties to evaluate the behavior of the material under tension and temperature. Accelerated stability tests of the pharmaceutical form were also performed. Comparatively, formulations with glycerin presented improved mucoadhesiveness, and formulations with 1 and 2% of CMC presented more adequate rheological behavior for the proposed application. In conclusions, the systems presented adequate properties for the delivery of chemotherapeutic agents for optimized BC treatments.
  • Resumo IPEN-doc 25412
    Development of lignin-PVP based dressing for wound treatment
    2018 - NOGUEIRA, K.M.; VARCA, J.O.; VARCA, G.H.C.; LIMA, C.S.A.; LUGAO, A.B.
    Lignin is a carbon renewable source and has been widely explored in different fields in the last years, especially in biomaterials as dressing and other biomedical devices due its natural origin and low cost1. Poly(ethylene oxide) (PEO) is a synthetic polymer largely used in biomedical applications due its important characteristics such as high hydrophilicity, non-toxicity and ease of process2. The present work aimed to develop a lignin-PEO based dressing for wound treatment by casting. In specific terms, three different polymer blends were formulated using a range of 3 to 10% (w/v) lignin was tested with the addition of 1 to 3% PEO. Lignin was solubilized in aqueous solution (pH>13) alkalized with sodium hydroxide and PEO was solubilized in distilled water. The solutions were heated up to 70 ºC and homogenized until complete polymer dissolution. Then, PEO solution and poly(ethylene glycol) diacrylate (PEGDA) (0.5 - 1.0%) were added to the lignin solution and the blend was mixed for 30 minutes at 70 ºC. Posteriorly the blends were submitted to casting and drying under different conditions, room temperature for 48 hours and incubated at 40 ºC for 24 hours. A control sample of 6% lignin was prepared in the same conditions. Samples were evaluated by physico-chemical and morphological characterizations. The swelling and gel fraction profiles were assessed as well as thermal behavior by differential scanning calorimetry. Chemical modifications were evaluated by infrared spectroscopy. Samples with higher PEGDA content presented minor swelling index. The blends formulated presented different thermal behavior in comparison with the control. Infrared spectroscopy pointed some chemical modifications promoted by the crosslinking agent. In general terms, the material developed presented a potential to continue been explored as dressing for wound treatment