Convolutional neural network-based pattern recognition in natural circulation instability images

Carregando...
Imagem de Miniatura

Data

Data de publicação

Orientador

Título da Revista

ISSN da Revista

Título do Volume

É parte de

É parte de

É parte de

Concilium
Exportar
Mendeley

Projetos de Pesquisa

Unidades Organizacionais

Fascículo

Resumo
Heat removal systems employing natural circulation are key in new nuclear power plant designs for mitigating accidents. This study applies Convolutional Neural Networks (CNNs) to classify 'chugging' instability phases, analyzing 1152 two-phase flow images from a Natural Circulation Circuit. Three CNN models, including one incorporating transfer learning from the ImageNet database, were trained via five-fold cross-validation to fine-tune hyperparameters. This involved comparing models with and without transfer learning against a baseline linear model. A model using a pre-trained Resnet50 with transfer learning accurately classified all 230 samples, outperforming the baseline linear model with an F1-Score of 0.859. The results endorse the use of CNNs with transfer learning for thermohydraulic image analysis in identifying natural circulation instability stages.

Como referenciar
SCHOTT, SANDRO M.C.; SILVA, MARCONES C.B. da; ANDRADE, DELVONEI A. de; MESQUITA, ROBERTO N. de. Convolutional neural network-based pattern recognition in natural circulation instability images. Concilium, v. 24, n. 4, p. 267-288, 2024. DOI: 10.53660/CLM-2919-24D10. Disponível em: https://repositorio.ipen.br/handle/123456789/48081. Acesso em: 30 Dec 2025.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.

Agência de fomento

Coleções