Monitoring and fault detection

Carregando...
Imagem de Miniatura

Data

Data de publicação

Orientador

Título da Revista

ISSN da Revista

Título do Volume

É parte de

É parte de

É parte de

Latin American Journal of Development
Exportar
Mendeley

Projetos de Pesquisa

Unidades Organizacionais

Fascículo

Resumo
In this work, two different Computational Intelligence Techniques were used to provide a comparative study by using Neural Networks and Neuro-fuzzy applied in Monitoring and Fault Detection in sensor of an experimental reactor. Both methodologies were developed and tested using a model composed by 9 variables: N2 (% power), T3 (pool water temperature), T4 (decay tank inlet temperature), T7 (primary loop outlet temperature), T8 (secondary loop inlet temperature), T9 (secondary loop outlet temperature), F1M3 (primary loop flowrate), F2M3 (secondary loop flow rate) and R1M3 (nuclear dose rate). It was used data from the first week experimental reactor IEA-R1 operation from October 2012 in both Monitoring Systems, which was divided in subsets in a following way: 60% for training, 20% for tens and 20% for validation. The results obtained using Neuro-fuzzy were better than the ones with Neural Networks.

Como referenciar
BUENO, ELAINE I.; PEREIRA, IRACI M. Monitoring and fault detection: a comparative study using computational intelligence techniques. Latin American Journal of Development, v. 6, n. 1, p. 18-30, 2024. DOI: 10.46814/lajdv6n1-002. Disponível em: https://repositorio.ipen.br/handle/123456789/48707. Acesso em: 30 Dec 2025.
Esta referência é gerada automaticamente de acordo com as normas do estilo IPEN/SP (ABNT NBR 6023) e recomenda-se uma verificação final e ajustes caso necessário.

Agência de fomento

Coleções